Stability, Multiplicity, and Sunspots
 (deriving solutions to linearized system \& Blanchard-Kahn conditions)

London School of Economics
(c) by Wouter J. Den Haan

Content

(1) A lot on sunspots
(2) Showing you what Dynare does (sort of) and Blanchard-Kahn conditions

- and an even simpler way based on time iteration (an idea of Pontus Rendahl)

Introduction Sunspots

- What do we mean with non-unique solutions?
- multiple solution versus multiple steady states
- What are sunspots?

Terminology

- Definitions are very clear
- (use in practice can be sloppy)

Model:

$$
H\left(p_{+1}, p\right)=0
$$

Solution:

$$
p_{+1}=f(p)
$$

multiple steady states; unique solution if initial p is given; (many solutions if no initial p is given

Multiple steady states \& sometimes multiple solutions

From Den Haan (2007)

Large sunspots (around 2000 at the peak)

Past Sun Spot Cycles

Sun spots even had a "Great Moderation"

Current cycle (another big one?)

Cute NASA video

- https://www.youtube.com/watch?v=UD5VViT08ME

Sunspots in economics

- Definition: a solution is a sunspot solution if it depends on a stochastic variable that only appears outside the system.
So not part of the model environment
- Model:

$$
\begin{aligned}
0 & =\mathbb{E} H\left(p_{t+1}, p_{t}, d_{t+1}, d_{t}\right) \\
d_{t} & : \text { exogenous random variable }
\end{aligned}
$$

Sunspots in economics (Cass \& Shell 1983)

- Non-sunspot solution:

$$
p_{t}=f\left(p_{t-1}, p_{t-2}, \cdots, d_{t}, d_{t-1}, \cdots\right)
$$

- Sunspot:

$$
\begin{aligned}
p_{t} & =f\left(p_{t-1}, p_{t-2}, \cdots, d_{t}, d_{t-1}, \cdots, s_{t}\right) \\
s_{t} & : \text { random variable with } \mathbb{E}\left[s_{t+1}\right]=0
\end{aligned}
$$

Origin of sunspots in economics

- William Stanley Jevons (1835-82) explored empirical relationship between sunspot activity (that is, the real thing!!!) and the price of corn.
- Fortunately, Jevons had some other contributions as well, such as "Jevons Paradox". His work is considered to be the start of mathematical economics.

Jevons Paradox

"It is wholly a confusion of ideas to suppose that the economical use of fuel is equivalent to a diminished consumption. The very contrary is the truth."

William Stanley Jevons a British economist and logician.

Sunspots and science

Why are sunspots attractive?

- sunspots: s_{t} matters, just because agents believe this
- self-fulfilling expectations don't seem that unreasonable
- sunspots provide many sources of shocks
- number of sizable fundamental shocks small

Sunspots and science

Why are sunspots not so attractive?

- Purpose of science is to come up with predictions
- If there is one sunspot solution, there are zillion others as well
- Support for the conditions that make them happen not overwhelming
- you need sufficiently large increasing returns to scale or externality

Obtaining linear solutions: Overview

(1) Getting started

- simple examples
(2) General derivation of Blanchard-Kahn solution
- When unique solution?
- When multiple solution?
- When no (stable) solution?
(3) When do sunspots occur?

Getting started

Model: $\quad y_{t+1}=\rho y_{t}$

Getting started

Model: $\quad y_{t+1}=\rho y_{t}$

- infinite number of solutions, independent of the value of ρ

Getting started

Model: $\begin{aligned} & y_{t+1}=\rho y_{t} \\ & y_{0} \text { is given }\end{aligned}$

Getting started

$$
\begin{array}{ll}
\text { Model: } & y_{t+1}=\rho y_{t} \\
& y_{0} \text { is given }
\end{array}
$$

- unique solution, independent of the value of ρ

Getting started

- Blanchard-Kahn conditions apply to models that add as a requirement that the series do not explode

$$
y_{t+1}=\rho y_{t}
$$

Model:

$$
y_{t} \text { cannot explode }
$$

- $\rho>1$: unique solution, namely $y_{t}=0$ for all t
- $\rho<1$: many solutions
- $\rho=1$: many solutions
- be careful with $\rho=1$, uncertainty matters

Neoclassical growth model; 2nd-order difference equation

$$
\begin{gathered}
\left(k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-\gamma} \\
= \\
\beta\left(k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-\gamma}\left(\alpha k_{t}^{\alpha-1}+1-\delta\right)
\end{gathered}
$$

k_{1} given

State-space representation

$$
\begin{gathered}
A y_{t+1}+B y_{t}=\varepsilon_{t+1} \\
\mathbb{E}\left[\varepsilon_{t+1} \mid I_{t}\right]=0 \\
y_{t}: \quad \text { is an } n \times 1 \text { vector } \\
m \leq n \text { elements are not determined }
\end{gathered}
$$

some elements of ε_{t+1} are not exogenous shocks but prediction errors

Neoclassical growth model and state space representation

$$
\mathbb{E}\left[\begin{array}{c}
\left(\exp \left(z_{t}\right) k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-\gamma}= \\
\begin{array}{c}
\beta\left(\exp \left(z_{t+1}\right) k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-\gamma} \\
\times\left(\alpha \exp \left(z_{t+1}\right) k_{t}^{\alpha-1}+1-\delta\right)
\end{array} \\
\hline
\end{array} I_{t}\right]
$$

or equivalently without $\mathbb{E}[\cdot]$

$$
\begin{gathered}
\left(\exp \left(z_{t}\right) k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-\gamma}= \\
\beta\left(\exp \left(z_{t+1}\right) k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-\gamma} \\
\times\left(\alpha \exp \left(z_{t+1}\right) k_{t}^{\alpha-1}+1-\delta\right) \\
+e_{\mathrm{E}, t+1}
\end{gathered}
$$

Neoclassical growth model and state space representation

Linearized model:

$$
\begin{gathered}
k_{t+1}=a_{1} k_{t}+a_{2} k_{t-1}+a_{3} z_{t+1}+a_{4} z_{t}+e_{\mathrm{E}, t+1} \\
z_{t+1}=\rho z_{t}+e_{z, t+1} \\
k_{0} \text { is given }
\end{gathered}
$$

- k_{t} is end-of-period t capital
- $\Longrightarrow k_{t}$ is chosen in t

Neoclassical growth model and state space representation

$$
\left[\begin{array}{ccc}
1 & 0 & -a_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
k_{t+1} \\
k_{t} \\
z_{t+1}
\end{array}\right]+\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{4} \\
-1 & 0 & 0 \\
0 & 0 & -\rho
\end{array}\right]\left[\begin{array}{c}
k_{t} \\
k_{t-1} \\
z_{t}
\end{array}\right]=\left[\begin{array}{c}
e_{\mathrm{E}, t+1} \\
0 \\
e_{z, t+1}
\end{array}\right]
$$

Dynamics of the state-space system

$$
\begin{gathered}
A y_{t+1}+B y_{t}=\varepsilon_{t+1} \\
y_{t+1}=-A^{-1} B y_{t}+A^{-1} \varepsilon_{t+1} \\
=D y_{t}+A^{-1} \varepsilon_{t+1}
\end{gathered}
$$

Thus

$$
y_{t+1}=D^{t} y_{1}+\sum_{l=1}^{t} D^{t-l} A^{-1} \varepsilon_{l+1}
$$

Jordan matrix decomposition

$$
D=P \Lambda P^{-1}
$$

- Λ is a diagonal matrix with the eigen values of D
- without loss of generality assume that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots\left|\lambda_{n}\right|$ Let

$$
P^{-1}=\left[\begin{array}{c}
\tilde{p}_{1} \\
\vdots \\
\tilde{p}_{n}
\end{array}\right]
$$

where \tilde{p}_{i} is a $(1 \times n)$ vector

Dynamics of the state-space system

$$
\begin{aligned}
y_{t+1} & =D^{t} y_{1}+\sum_{l=1}^{t} D^{t-l} A^{-1} \varepsilon_{l+1} \\
& =P \Lambda^{t} P^{-1} y_{1}+\sum_{l=1}^{t} P \Lambda^{t-l} P^{-1} A^{-1} \varepsilon_{l+1}
\end{aligned}
$$

Dynamics of the state-space system

multiplying dynamic state-space system with P^{-1} gives

$$
P^{-1} y_{t+1}=\Lambda^{t} P^{-1} y_{1}+\sum_{l=1}^{t} \Lambda^{t-l} P^{-1} A^{-1} \varepsilon_{l+1}
$$

or

$$
\tilde{p}_{i} y_{t+1}=\lambda_{i}^{t} \tilde{p}_{i} y_{1}+\sum_{l=1}^{t} \lambda_{i}^{t-l} \tilde{p}_{i} A^{-1} \varepsilon_{l+1}
$$

recall that y_{t} is $n \times 1$ and \tilde{p}_{i} is $1 \times n$. Thus, $\tilde{p}_{i} y_{t}$ is a scalar

Model

(1) $\tilde{p}_{i} y_{t+1}=\lambda_{i}^{t} \tilde{p}_{i} y_{1}+\sum_{l=1}^{t} \lambda_{i}^{t-l} \tilde{p}_{i} A^{-1} \varepsilon_{l+1}$
(2) $\mathbb{E}\left[\varepsilon_{t+1} \mid I_{t}\right]=0$
(3) m elements of y_{1} are not determined
(4) y_{t} cannot explode

Reasons for multiplicity

(1) There are free elements in y_{1}
(2) The only constraint on $e_{\mathrm{E}, t+1}$ is that it is a prediction error.

- This leaves lots of freedom

Eigen values and multiplicity

- Suppose that $\left|\lambda_{1}\right|>1$
- To avoid explosive behavior it must be the case that
(1) $\tilde{p}_{1} y_{1}=0$ and
(2) $\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l$

How to think about \#1?

$$
\tilde{p}_{1} y_{1}=0
$$

- Simply an additional equation to pin down some of the free elements
- Much better: This is the policy function in the first period

How to think about \#1?

$$
\tilde{p}_{1} y_{1}=0
$$

Neoclassical growth model:

- $y_{1}=\left[k_{1}, k_{0}, z_{1}\right]^{T}$
- $\left|\lambda_{1}\right|>1,\left|\lambda_{2}\right|<1, \lambda_{3}=\rho<1$
- $\tilde{p}_{1} y_{1}$ pins down k_{1} as a function of k_{0} and z_{1}
- this is the policy function in the first period

How to think about \#2?

$$
\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l
$$

- This pins down $e_{\mathrm{E}, t}$ as a function of $\varepsilon_{z, t}$
- That is, the prediction error must be a function of the structural shock, $\varepsilon_{z, t}$, and cannot be a function of other shocks,
- i.e., there are no sunspots

How to think about \#2?

$$
\tilde{p}_{1} A^{-1} \varepsilon_{l}=0 \quad \forall l
$$

Neoclassical growth model:

- $\tilde{p}_{1} A^{-1} \mathcal{E}_{t}$ says that the prediction error $e_{\mathrm{E}, t}$ of period t is a fixed function of the innovation in period t of the exogenous process, $e_{z, t}$

How to think about \#1 combined with \#2?

If these conditions on the RHS are imposed, then we get for the LHS

$$
\tilde{p}_{1} y_{t}=0 \quad \forall t
$$

- Without sunspots
- i.e. with $\tilde{p}_{1} A^{-1} \varepsilon_{t}=0 \quad \forall t$
- k_{t} is pinned down by k_{t-1} and z_{t} in every period.

Blanchard-Kahn conditions

- Uniqueness: For every free element in y_{1}, you need one $\lambda_{i}>1$
- Multiplicity: Not enough eigenvalues larger than one
- No stable solution: Too many eigenvalues larger than one

How come this is so simple?

- In practice, it is easy to get

$$
A y_{t+1}+B y_{t}=\varepsilon_{t+1}
$$

- How about the next step?

$$
y_{t+1}=-A^{-1} B y_{t}+A^{-1} \varepsilon_{t+1}
$$

- Bad news: A is often not invertible
- Good news: Same set of results can be derived
- Schur decomposition (See Klein 2000 and Soderlind 1999)

Solutions to linear systems

(1) The analysis outlined above (requires A to be invertible)
(2) Generalized version of analysis above (see Klein 2000)
(3) Apply time iteration to linearized system (I learned this from Pontus Rendahl)

Solutions to linear systems

Model:

$$
\Gamma_{2} k_{t+1}+\Gamma_{1} k_{t}+\Gamma_{0} k_{t-1}=0
$$

or

$$
\left[\begin{array}{cc}
\Gamma_{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
k_{t+1} \\
k_{t}
\end{array}\right]+\left[\begin{array}{cc}
\Gamma_{1} & \Gamma_{0} \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
k_{t} \\
k_{t-1}
\end{array}\right]=0
$$

Standard approach \#1

The method outlined above \Longrightarrow a unique solution of the form

$$
k_{t}=a k_{t-1}
$$

if BK conditions are satisfied

Standard approach \#2

- Impose that the solution is of the recursive form

$$
k_{t}=a k_{t-1}
$$

and solve for a from

$$
\Gamma_{2} a^{2} k_{t-1}+\Gamma_{1} a k_{t-1}+\Gamma_{0} k_{t-1}=0 \quad \forall k_{t-1}
$$

- Two solutions for a : $0<a_{1}<1, a_{2}>1$
- Does not simply generalize to higher-dimensional case

Time iteration

- Impose that the solution is of the form

$$
k_{t}=a k_{t-1}
$$

- Use time iteration scheme, starting with $a_{[1]}$
- Recall that time iteration means using the guess for tomorrows behavior and then solve for todays behavior
- Method is demonstrated for scalar case but does easily generalize
(This simple procedure was pointed out to me by Pontus Rendahl)

Time iteration

- Follow the following iteration scheme, starting with $a_{[1]}$
- Use $a_{[i]}$ to describe next period's behavior. That is,

$$
\Gamma_{2} a_{[i]} k_{t}+\Gamma_{1} k_{t}+\Gamma_{0} k_{t-1}=0
$$

(note the difference with last approach on previous slide)

- Obtain $a_{[i+1]}$ from

$$
\begin{gathered}
\left(\Gamma_{2} a_{[i]}+\Gamma_{1}\right) k_{t}+\Gamma_{0} k_{t-1}=0 \\
k_{t}=-\left(\Gamma_{2} a_{[i]}+\Gamma_{1}\right)^{-1} \Gamma_{0} k_{t-1} \\
a_{[i+1]}=-\left(\Gamma_{2} a_{[i]}+\Gamma_{1}\right)^{-1} \Gamma_{0}
\end{gathered}
$$

Advantages of time iteration

- It is simple, even if the " A matrix" is not invertible. (the inversion required by time iteration seems less problematic in practice)
- Since time iteration is linked to value function iteration, it has nice convergence properties

Example

$$
k_{t+1}-2 k_{t}+0.75 k_{t-1}=0
$$

- The two solutions are

$$
k_{t}=0.5 k_{t-1} \& k_{t}=1.5 k_{t-1}
$$

- Time iteration on $k_{t}=a_{[i]} k_{t-1}$ converges to stable solution for all initial values of $a_{[i]}$ except 1.5.

References

- Larry Christiano taught me (a long time ago) this simple way of deriving the BK conditions and I think that I did not even change the notation.
- Blanchard, Olivier and Charles M. Kahn, 1980, The Solution of Linear Difference Models under Rational Expectations, Econometrica, 1305-1313.
- Den Haan, Wouter J., 2007, Shocks and the Unavoidable Road to Higher Taxes and Higher Unemployment, Review of Economic Dynamics, 348-366.
- simple model in which the size of the shocks has long-term consequences
- Farmer, Roger, 1993, The Macroeconomics of Self-Fulfilling Prophecies, The MIT Press.
- textbook by the pioneer
- Klein, Paul, 2000, Using the Generalized Schur form to Solve a Multivariate Linear Rational Expectations Model, Journal of Economic Dynamics and Control, 1405-1423.
- in case you want to do the analysis without the simplifying assumption that A is invertible
- Soderlind, Paul, 1999, Solution and estimation of RE macromodels with optimal policy, European Economic Review, 813-823
- also doesn't assume that A is invertible; possibly a more accessible paper

