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Content

1 A lot on sunspots

2 Showing you what Dynare does (sort of) and Blanchard-Kahn
conditions

• and an even simpler way based on time iteration
(an idea of Pontus Rendahl)
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Introduction Sunspots

• What do we mean with non-unique solutions?
• multiple solution versus multiple steady states

• What are sunspots?
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Terminology

• Definitions are very clear
• (use in practice can be sloppy)

Model:

H(p+1, p) = 0

Solution:
p+1 = f (p)
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multiple steady states; unique solution if initial p is given;
(many solutions if no initial p is given
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Multiple steady states & sometimes multiple solutions
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positive expectations
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From Den Haan (2007)
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Large sunspots (around 2000 at the peak)
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Past Sun Spot Cycles

Sun spots even had a ”Great Moderation”
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Current cycle (another big one?)
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Cute NASA video

• https://www.youtube.com/watch?v=UD5VViT08ME
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Sunspots in economics

• Definition: a solution is a sunspot solution if it depends on a
stochastic variable that only appears outside the system.
So not part of the model environment

• Model:

0 = EH(pt+1, pt, dt+1, dt)

dt : exogenous random variable
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Sunspots in economics (Cass & Shell 1983)

• Non-sunspot solution:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · )

• Sunspot:

pt = f (pt−1, pt−2, · · · , dt, dt−1, · · · , st)

st : random variable with E [st+1] = 0
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Origin of sunspots in economics

• William Stanley Jevons (1835-82) explored empirical
relationship between sunspot activity (that is, the real thing!!!)
and the price of corn.

• Fortunately, Jevons had some other contributions as well, such
as ”Jevons Paradox”. His work is considered to be the start of
mathematical economics.
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Jevons Paradox
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Sunspots and science

Why are sunspots attractive?

• sunspots: st matters, just because agents believe this
• self-fulfilling expectations don’t seem that unreasonable

• sunspots provide many sources of shocks
• number of sizable fundamental shocks small
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Sunspots and science

Why are sunspots not so attractive?

• Purpose of science is to come up with predictions
• If there is one sunspot solution, there are zillion others as well

• Support for the conditions that make them happen not
overwhelming

• you need sufficiently large increasing returns to scale or
externality
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Obtaining linear solutions: Overview

1 Getting started
• simple examples

2 General derivation of Blanchard-Kahn solution
• When unique solution?
• When multiple solution?
• When no (stable) solution?

3 When do sunspots occur?
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Getting started

•
Model: yt+1 = ρyt

• infinite number of solutions, independent of the value of ρ
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Getting started
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Getting started

•
Model:

yt+1 = ρyt
y0 is given

• unique solution, independent of the value of ρ
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Getting started

• Blanchard-Kahn conditions apply to models that add as a
requirement that the series do not explode

yt+1 = ρyt
Model:

yt cannot explode

• ρ > 1: unique solution, namely yt = 0 for all t
• ρ < 1: many solutions

• ρ = 1: many solutions
• be careful with ρ = 1, uncertainty matters
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Neoclassical growth model; 2nd-order difference equation

(kα
t−1 + (1 − δ)kt−1 − kt)−γ

=
β(kα

t + (1 − δ)kt − kt+1)
−γ(αkα−1

t + 1 − δ)

k1 given
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State-space representation

Ayt+1 + Byt = εt+1

E [εt+1|It] = 0

yt : is an n × 1 vector
m ≤ n elements are not determined

some elements of εt+1 are not exogenous shocks but prediction errors

22 / 48



Multiplicity Getting started General Derivation Time iteration and linear solutions

Neoclassical growth model and state space representation

(
exp(zt)kα

t−1 + (1 − δ)kt−1 − kt
)−γ

=

E

[
β (exp(zt+1)kα

t + (1 − δ)kt − kt+1)
−γ

×
(

α exp (zt+1) kα−1
t + 1 − δ

) ∣∣∣∣∣ It

]

or equivalently without E [·](
exp(zt)kα

t−1 + (1 − δ)kt−1 − kt
)−γ

=

β (exp(zt+1)kα
t + (1 − δ)kt − kt+1)

−γ

×
(

α exp (zt+1) kα−1
t + 1 − δ

)
+eE,t+1
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Neoclassical growth model and state space representation

Linearized model:

kt+1 = a1kt + a2kt−1 + a3zt+1 + a4zt + eE,t+1

zt+1 = ρzt + ez,t+1

k0 is given

• kt is end-of-period t capital
• =⇒ kt is chosen in t
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Neoclassical growth model and state space representation

 1 0 -a3
0 1 0
0 0 1

 kt+1
kt

zt+1

+

 -a1 -a2 -a4
-1 0 0
0 0 -ρ

 kt
kt−1

zt

 =

 eE,t+1
0

ez,t+1


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Dynamics of the state-space system

Ayt+1 + Byt = εt+1

yt+1 = −A−1Byt + A−1εt+1

= Dyt + A−1εt+1

Thus

yt+1 = Dty1 +
t

∑
l=1

Dt−lA−1εl+1
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Jordan matrix decomposition

D = PΛP−1

• Λ is a diagonal matrix with the eigen values of D
• without loss of generality assume that |λ1| ≥ |λ2| ≥ · · · |λn|

Let

P−1 =

 p̃1
...

p̃n


where p̃i is a (1 × n) vector
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Dynamics of the state-space system

yt+1 = Dty1 +
t

∑
l=1

Dt−lA−1εl+1

= PΛtP−1y1 +
t

∑
l=1

PΛt−lP−1A−1εl+1
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Dynamics of the state-space system

multiplying dynamic state-space system with P−1 gives

P−1yt+1 = ΛtP−1y1 +
t

∑
l=1

Λt−lP−1A−1εl+1

or

p̃iyt+1 = λt
i p̃iy1 +

t

∑
l=1

λt−l
i p̃iA−1εl+1

recall that yt is n × 1 and p̃i is 1 × n. Thus, p̃iyt is a scalar
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Model

1 p̃iyt+1 = λt
i p̃iy1 + ∑t

l=1 λt−l
i p̃iA−1εl+1

2 E [εt+1|It] = 0
3 m elements of y1 are not determined

4 yt cannot explode
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Reasons for multiplicity

1 There are free elements in y1

2 The only constraint on eE,t+1 is that it is a prediction error.
• This leaves lots of freedom
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Eigen values and multiplicity

• Suppose that |λ1| > 1
• To avoid explosive behavior it must be the case that

1 p̃1y1 = 0 and

2 p̃1A−1εl = 0 ∀l
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How to think about #1?

p̃1y1 = 0

• Simply an additional equation to pin down some of the free
elements

• Much better: This is the policy function in the first period
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How to think about #1?

p̃1y1 = 0

Neoclassical growth model:

• y1 = [k1, k0, z1]
T

• |λ1| > 1, |λ2| < 1, λ3 = ρ < 1
• p̃1y1 pins down k1 as a function of k0 and z1

• this is the policy function in the first period
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How to think about #2?

p̃1A−1εl = 0 ∀l

• This pins down eE,t as a function of εz,t

• That is, the prediction error must be a function of the
structural shock, εz,t, and cannot be a function of other shocks,

• i.e., there are no sunspots
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How to think about #2?

p̃1A−1εl = 0 ∀l

Neoclassical growth model:

• p̃1A−1εt says that the prediction error eE,t of period t is a fixed
function of the innovation in period t of the exogenous process,
ez,t
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How to think about #1 combined with #2?

If these conditions on the RHS are imposed, then we get for the LHS

p̃1yt = 0 ∀t

• Without sunspots
• i.e. with p̃1A−1εt = 0 ∀t

• kt is pinned down by kt−1 and zt in every period.
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Blanchard-Kahn conditions

• Uniqueness: For every free element in y1, you need one λi > 1
• Multiplicity: Not enough eigenvalues larger than one

• No stable solution: Too many eigenvalues larger than one
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How come this is so simple?
• In practice, it is easy to get

Ayt+1 + Byt = εt+1

• How about the next step?

yt+1 = −A−1Byt + A−1εt+1

• Bad news: A is often not invertible

• Good news: Same set of results can be derived
• Schur decomposition (See Klein 2000 and Soderlind 1999)
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Solutions to linear systems

1 The analysis outlined above
(requires A to be invertible)

2 Generalized version of analysis above
(see Klein 2000)

3 Apply time iteration to linearized system
(I learned this from Pontus Rendahl)
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Solutions to linear systems

Model:
Γ2kt+1 + Γ1kt + Γ0kt−1 = 0

or [
Γ2 0
0 1

] [
kt+1

kt

]
+

[
Γ1 Γ0
−1 0

] [
kt

kt−1

]
= 0
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Standard approach #1

The method outlined above =⇒ a unique solution of the form

kt = akt−1

if BK conditions are satisfied
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Standard approach #2

• Impose that the solution is of the recursive form

kt = akt−1

and solve for a from

Γ2a2kt−1 + Γ1akt−1 + Γ0kt−1 = 0 ∀kt−1

• Two solutions for a: 0 < a1 < 1, a2 > 1
• Does not simply generalize to higher-dimensional case
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Time iteration

• Impose that the solution is of the form

kt = akt−1

• Use time iteration scheme, starting with a[1]

• Recall that time iteration means using the guess for tomorrows
behavior and then solve for todays behavior

• Method is demonstrated for scalar case but does easily
generalize

(This simple procedure was pointed out to me by Pontus Rendahl)
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Time iteration

• Follow the following iteration scheme, starting with a[1]
• Use a[i] to describe next period’s behavior. That is,

Γ2a[i]kt + Γ1kt + Γ0kt−1 = 0

(note the difference with last approach on previous slide)

• Obtain a[i+1] from

(Γ2a[i] + Γ1)kt + Γ0kt−1 = 0

kt = −
(

Γ2a[i] + Γ1

)−1
Γ0kt−1

a[i+1] = −
(

Γ2a[i] + Γ1

)−1
Γ0
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Advantages of time iteration

• It is simple, even if the ”A matrix” is not invertible.
(the inversion required by time iteration seems less problematic
in practice)

• Since time iteration is linked to value function iteration, it has
nice convergence properties
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Example

kt+1 − 2kt + 0.75kt−1 = 0

• The two solutions are

kt = 0.5kt−1 & kt = 1.5kt−1

• Time iteration on kt = a[i]kt−1 converges to stable solution for
all initial values of a[i] except 1.5.
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