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What is it? Pros and Cons Improvements Learning

Overview

• Two PEA algorithms

• Explaining simulations PEA

• Advantages and disadvantages

• Improvements of Maliar, Maliar & Judd

• PEA to introduce learning
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Model

c−ν
t = Et

[
βc−ν

t+1

(
αzt+1kα−1

t+1 + 1 − δ
)]

ct + kt+1 = ztkα
t + (1 − δ) kt

ln(zt+1) = ρ ln (zt) + εt+1

εt+1 ∼ N(0, σ2)

k1, z1 given

kt is beginning-of-period t capital stock
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Two types of PEA

1 As a standard projections algorithm:

1 parameterize Et [·] with Pn(kt, zt; ηn)
(note that Et[·] is a function of the usual state variables.)

2 solve ct from
ct = (Pn(kt, zt; ηn))

−1/ν

and kt+1 from budget constraint
3 =⇒ only difference is that Et[·] is parameterized instead of

consumption or capital choice.

2 Simulation PEA (stochastic and non-stochastic)
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Stochastic PEA based on simulations

1 Simulate {zt}T
t=1

2 Let η1
n be initial guess for ηn
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Stochastic PEA

3 Iterate until ηi
n converges using following scheme

1 Generate {ct, kt+1}T
t=1 using

c−ν
t = Pn(kt, zt; ηi

n)

kt+1 = ztkα
t + (1 − δ) kt − ct

2 Generate {yt+1}T−1
t=1 using

yt+1 = βc−ν
t+1

(
αzt+1kα−1

t+1 + 1 − δ
)

3 Let

η̂i
n = arg min

η

T

∑
t=Tbegin

(yt+1 − Pn(kt, zt; η))2

T

4 Update using

ηi+1
n = ωη̂i

n + (1 − ω) ηi
n with 0 < ω ≤ 1
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Stochastic PEA

• Tbegin >> 1 (say 500 or 1,000)
• ensures possible bad period 1 values don’t matter

• ω < 1 improves stability
• ω is called ”dampening” parameter
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Stochastic PEA
• Idea of regression:

yt+1 ≈ Pn(kt, zt; η) + ut+1,

• ut+1 is a prediction error =⇒ ut+1 is orthogonal to regressors

• Suppose

Pn(kt, zt; η) = exp (a0 + a1 ln kt + a2 ln zt) .

• You are not allowed to run the linear regression

ln yt+1 = a0 + a1 ln kt + a2 ln zt + u∗
t+1

Why not?
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PEA & RE

• Suppose η∗
n is the fixed point we are looking for

• So with η∗
n we get best predictor of yt+1

• Does this mean that solution is a rational expectations
equilibrium?
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Disadvantages of stoch. sim. PEA

• The inverse of X′X may be hard to calculate for higher-order
approximations

• Regression points are clustered =⇒ low precission

• recall that even equidistant nodes are not enough for uniform
convergence; with simulated date, the ”nodes” are even less
spread out with stochastic PEA)
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Disadvantages of stochastic PEA

• Projection step has sampling error
• this disappears slowly (especially with serial correlation)
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Advantages of simulated nodes

• Regression points are clustered

=⇒ better fit where it matters IF functional form is poor

(with good functional form it is better to spread out points)
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Advantages of simulated nodes

• BIG ADVANTAGE: Not subject to the exponential curse of
dimensionality as standard projection methods.
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Advantages of simulated nodes

• Grid: you may include impossible points

Simulation: model iself tells you which nodes to include

• (approximation also important and away from fixed point you
may still get in weird places of the state space)

14 / 33



What is it? Pros and Cons Improvements Learning

Odd shapes ergodic set in matching model
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Non-stochastic Simulations PEA

Improvements from Maliar, Maliar & Judd (2010,2011)

1 Use flexibility given to you

2 Use Ê [yt+1] instead of yt+1 as regressand

• Ê [yt+1] is numerical approximation of E[yt+1]

• even with poor approximation the results improve !!!

3 Improve regression step
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Use flexibility
Many E[]’s to approximate.

1 Standard approach:

c−ν
t = Et

[
βc−v

t+1αβc−ν
t+1

(
αzt+1kα−1

t+1 + 1 − δ
)]

2 Alternative:

kt+1 = Et

[
kt+1βαβ

(
ct+1

ct

)−ν (
αzt+1kα−1

t+1 + 1 − δ
)]

• Such transformations can make computations easier, but can
also affect stability of algorithm (for better or worse)
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E[y] instead of y as regressor

• E[yt+1] = E[f (εt+1)] with εt+1 ∼ N(0, σ2)

=⇒ Hermite Gaussian quadrature can be used

(MMJ: using Ê [yt+1] calculated using one node is better than
using yt+1)

• Key thing to remember: sampling uncertainty is hard to get rid
off
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E[y] instead of y as regressor

• Suppose:

yt+1 = exp (ao + a1 ln kt + a2 ln zt) + ut+1

ut+1 = prediction error

• Then you cannot estimate coefficients using LS based on

ln (yt+1) = ao + a1 ln kt + a2 ln zt + u∗
t+1

• You have to use non-linear least squares
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E[y] instead of y as regressor

• Suppose:

E [yt+1] = exp (ao + a1 ln kt + a2 ln zt) + ūt+1

ūt+1 = numerical error

• Then you can estimate coefficients using LS based on

lnE [yt+1] = ao + a1 ln kt + a2 ln zt + ū∗
t+1

• Big practical advantage
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Simple way to improve regression

• The main underlying problem is that X′X is ill conditioned
which makes it difficult to calculate X′X

• This problem is reduced by

1 Scaling so that each variable has zero mean and unit variance

2 Hermite polynomials
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Hermite polynomials; Definition

Pn(x) =
n

∑
j=0

ajHj(x)

where the basis functions, Hj(x), satisfy

E
[
Hi(x)Hj (x)

]
= 0 for i ̸= j

if x ∼ N(0, 1)
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Hermite polynomials; Construction

H0(x) = 1
H1(x) = x

Hm+1(x) = xHm(x)− mHm−1(x) for j > 1

This gives

H0(x) = 1
H1(x) = x
H2(x) = x2 − 1
H3(x) = x3 − 3x
H4(x) = x4 − 6x2 + 3
H5(x) = x5 − 10x3 + 15x
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One tricky aspect about scaling

Suppose one of the explanatory variables is

xt =
kt − MT

ST

MT =
T

∑
t=1

kt/T & ST =

(
T

∑
t=1

(kt − MT)
2 /T

)1/2
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One tricky aspect about scaling

• =⇒ each iteration the explanatory variables change (since M
and S change)

• =⇒ taking a weighted average of old and new coefficient is odd

• I found that convergence properties can be quite bad

• So better to keep MT and ST fixed across iterations
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Two graphs say it all; regular polynomials
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Two graphs say it all; Hermite polynomials
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More ways to improve regression

1 LS-Singular Value Decomposition

2 Principal components

See Maliar, Maliar, Judd (2010,2011) for details.
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PEA and learning

• Traditional algorithm:
• simulate an economy using belief ηi

n
• formulate new belief ηi+1

n
• simulate same economy using belief ηi+1

n
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PEA and learning

• Alternative algorithm to find fixed point
• simulate T observations using belief ηT−1

n
• formulate new belief ηT

n
• generate 1 more observation
• use T + 1 observations to formulate new belief ηT+1

• continue

When convergence has taken place is more difficult to
determine, since each additional observation has smaller weight
since T increases.
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PEA and learning

• Modification of alternative algorithm is economically interesting
• simulate T observations using belief ηT−1

n
• use τ observations to formulate new belief ηT

n
• generate 1 more observation
• use last τ observations to formulate new belief ηT+1

• continue

• Beliefs are based on limited past =⇒ time-varying beliefs
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PEA and learning

• Suppose the model has different regimes
• e.g. high productivity and low productivity regime
• agents do not observe regime=⇒ it makes sense to use limited

number of past observations

• With the above algorithm agents gradually learn new law of
motion
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