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Dynamic Stochastic Model

o V-1
fcomax, = [ t:lﬁ}
s.t.
Ct+ker1 = zekZ 4+ (1—0)ke
In(zt+1) =pin(z:)+ €41
g1 ~ N(0,62)
k1,21 given

Set 6 =1 to simplify notation.
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First-Order Conditions

Polynomial approximations Splines

E: [Be oz k]
Ztkt(.x

P In (Zt) + &1

Ety1 N(Oa 62)

ki,z1 given

Extra
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Solution of the First-Order Conditions

True rational expectations solution:

G = C(kt,Zt)
kit1 = k(ktazt)

» Why a difficult problem to find these?

Extra
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DSGE model

Three steps

1. Function Approximation
2. Numerical Integration

3. Solving DSGE models with projection methods

Step #3 is made difficult because the functions we solve for are
only implicitly defined by the first-order conditions.

5/34



Overview Func. Approx.

Goal

Obtain an approximation for
f(x)

when
» f(x) is unknown, but we have some information, or

» f(x) is known, but too complex to work with
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Information available

» Either finite set of derivatives

» usually at one point

» or finite set of function values

» fi,---,fn at m nodes, x1, -+ ,Xm
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Classes of approximating functions

1. polynomials
» this still gives lots of flexibility
» examples of second-order polynomials
> a0+ aix+ axx?

> ag+a1ln(x)+ax(In(x))?

> exp (ao +a1In(x) +az(In (X))2)

2. splines, e.g., linear interpolation
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Classes of approximating functions

» Polynomials and splines can be expressed as
n
f(x) =~ Z o; Ti(x)
i=0

» Ti(x): the basis functions that define the class of
functions used, e.g., for regular polynomials:

Ti(x) = x'.

» «; : the coefficients that pin down the particular
approximation
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Reducing the dimensionality

unknown f (x): infinite dimensional object

Y oaiTi(x): n+1 elements
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General procedure

» Fix the order of the approximation n
» Find the coefficients o, -, o,
» Evaluate the approximation

» If necessary, increase n to get a better approximation
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Weierstrass (sloppy definition but true)

Let f: [a,b] — R be any real-valued function. For large
enough n, it is approximated arbitrarily well with the polynomial

n .
:E:l(XpX’.
i=0

Thus, we can get an accurate approximation if
» f is not a polynomial
» f is discontinuous

How can this be true?
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How to find the coefficients of the approximating
polynomial?

» With derivatives:

» use the Taylor expansion

» With a set of points (nodes), xp,- -+ ,Xm, and function
values, fo, -+, fm?

» use projection

» Lagrange way of writing the polynomial (see last part of
slides)
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Function fitting as a projection

Let
O] | T T
y=1|: |, Xx= )
fm Tolm) Tilm) = Tolxm)
then
Y~Xo

» Weneed m>n+1. Ism=n+1as bad as it is in
empirical work?

» What problem do you run into if n increases?
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Orthogonal polynomials

» Construct basis functions so that they are orthogonal to
each other, i.e.,

b
/a Ti(x)Ti(x)w(x)dx =0 Vi, j> i#}j

» This requires a particular weighting function (density),
w(x), and range on which variables are defined, [a, b]
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Chebyshev orthogonal polynomials

1

[a,b] =[-1,1] and w(x) = m

» What if function of interest is not defined on [—1,1]?
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Constructing Chebyshev polynomials

» The basis functions of the Chebyshev polynomials are

given by
To(x) =1
Ti(x) = x
f1(x) = ATE(x) = Tiy(x) i>1
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Chebyshev versus regular polynomials

» Chebyshev polynomials, i.e.,
n
f(x)~ Y, a;TF(x),
j=0
can be rewritten as regular polynomials, i.e.,

f(x) =~ Z bjxj,
j=0

Extra
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Chebyshev nodes

» The nt"—order Chebyshev basis function has n solutions to

T;(x)=0

» These are the n Chebyshev nodes
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Discrete orthogonality property

» Evaluated at the Chebyshev nodes, the Chebyshev
polynomials satisfy:

n

Y TE(xi) TE(xi) = 0 for j # k
i=1
» Thus, if
Tb(XD) -Ti(xo) . .TH(XO)
To(xa) Ti(x1) - Ta(x)
X = : : f
TO(Xm) Tl(Xm) Tn(Xm)

then X’'X is a diagonal matrix
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Uniform convergence

» Weierstrass = there is a good polynomial approximation

» Weierstrass # f(x) = limp_. pn(x) for every sequence
Pn(X)

» If polynomials are fitted on Chebyshev nodes=—> even
uniform convergence is guaranteed
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Splines

Inputs:
1. n41 nodes, xg, - ,Xp

2. n+1 function values, f(xg)--,f (xn)

» nodes are fixed =—> the n+1 function values are the
coefficients of the spline

Extra
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Piece-wise linear

» For x € [xj,xj1+1]

X — Xj X — Xj
fx)~[1-—— )f,-+(—' )f,- .
( ) ( Xi+1 — Xi Xi+1 — Xi i

» That is, a separate linear function is fitted on the n
intervals

» Still it is easier/better to think of the coefficients of the
approximating function as the n+ 1 function values
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Piece-wise linear versus polynomial

» Advantage: Shape preserving

» in particular monotonicity & concavity (strict?)

» Disadvantage: not differentiable

Extra
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Extra

Overview Func. Approx Polynomial approximations

material

Lagrange interpolation
Higher dimensional polynomials

Higher-order splines

Splines

Extra
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Lagrange interpolation

(x=x0) - (x =xi—1)(x = Xi41) - (X = xn)
(xi —x0) -+ (% —xi—1) (% — Xi41) -+ (Xi — xn)

L,'(X) = and

f(x) = foLlo(x)+ -+ faln(x).

» Right-hand side is an nt"-order polynomial
» By construction perfect fit at the n+ 1 nodes?

» — the RHS is the nt"-order approximation

26/34



DSGE model Overview Func. Approx Polynomial approximations Splines Extra

Higher-dimensional functions

» second-order complete polynomial in x and y:

Y, axy

0<iHj<2

» second-order tensor product polynomial in x and y:

Z Z%XV

i=0j=
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Complete versus tensor product

» tensor product can make programming easier

» simple double loop instead of condition on sum

» nth tensor has higher order term than (n+ 1)th complete
» 2"d_order tensor has fourth-order power

P at least locally, lower-order powers are more important
= complete polynomial may be more efficient
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Higher-order spline

Cubic (for example)

» Il Same inputs as with linear spline, i.e. n+1 function
values at n+ 1 nodes which can still be thought of as the
n+ 1 coefficients that determine approximating function

» Now fit 3™9-order polynomials on each of the n intervals
f(X) ~ a;+ bjx + C,'X2 + C/,'X3 for x € [X,'_l,X,'].

What conditions can we use to pin down these coefficients?
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Cubic spline conditions: levels

» We have 2+2(n—1) conditions to ensure that the
function values correspond to the given function values at
the nodes.

» For the intermediate nodes we need that the cubic
approximations of both adjacent segments give the
correct answer. For example, we need that

i = al+b1X1+c1x12+d1xf’ and

i = a+byxi+ C2X12 + dzxf

» For the two endpoints, xg and x,41, we only have one
cubic that has to fit it correctly.
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Cubic spline conditions: 1%t-order derivatives

» To ensure differentiability at the intermediate nodes we
need

b; —i—2c,-x,'—i-3d,-x,-2 =biy1 +2c,-+1x,-+3d,-+1x,-2 for x; € {x1,---

which gives us n—1 conditions.

Extra
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Cubic spline conditions: 2"-order derivatives

» To ensure that second derivatives are equal we need

2¢cj+6dix; =2cjy1+6di11x; for x; € {Xl, e ,Xn_l}.

» We now have 2+4(n—1) =4n—2 conditions to find 4n
unknowns.

» We need two additional conditions; e.g. that 2nd_order
derivatives at end points are zero.
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Splines - additional issues

» (standard) higher-order splines do not preserve shape
» higher-order difficult for multi-dimensional problems
» first-order trivial for multi-dimensional problems

» if interval is small then nondifferentiability often doesn’t
matter
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