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Dynamic Stochastic Model

max
{ct ,kt+1}∞

t=1

Et
[
Σ∞

t=1
c1−ν
t −1
1−ν

]
s.t.

ct +kt+1 = ztk
α
t +(1−δ )kt

ln(zt+1) = ρ ln(zt)+ εt+1

εt+1 ∼ N(0,σ2)

k1,z1 given

Set δ = 1 to simplify notation.
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First-Order Conditions

c−ν
t = Et

[
βc−ν

t+1αzt+1k
α−1
t+1

]
ct +kt+1 = ztk

α
t

ln(zt+1) = ρ ln(zt)+ εt+1

εt+1 ∼ N(0,σ2)

k1,z1 given
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Solution of the First-Order Conditions

True rational expectations solution:

ct = c(kt ,zt)

kt+1 = k(kt ,zt)

▶ Why a difficult problem to find these?
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Three steps

1. Function Approximation

2. Numerical Integration

3. Solving DSGE models with projection methods

Step #3 is made difficult because the functions we solve for are
only implicitly defined by the first-order conditions.

5 / 34



DSGE model Overview Func. Approx. Polynomial approximations Splines Extra

Goal

Obtain an approximation for

f (x)

when

▶ f (x) is unknown, but we have some information, or

▶ f (x) is known, but too complex to work with
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Information available

▶ Either finite set of derivatives

▶ usually at one point

▶ or finite set of function values

▶ f1, · · · , fm at m nodes, x1, · · · ,xm
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Classes of approximating functions

1. polynomials

▶ this still gives lots of flexibility

▶ examples of second-order polynomials

▶ a0+a1x+a2x
2

▶ a0+a1 ln(x)+a2 (ln(x))
2

▶ exp
(
a0+a1 ln(x)+a2 (ln(x))

2
)

2. splines, e.g., linear interpolation
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Classes of approximating functions

▶ Polynomials and splines can be expressed as

f (x)≈
n

∑
i=0

αiTi (x)

▶ Ti (x): the basis functions that define the class of
functions used, e.g., for regular polynomials:

Ti (x) = x i .

▶ αi : the coefficients that pin down the particular
approximation
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Reducing the dimensionality

unknown f (x) : infinite dimensional object

∑
n
i=0αiTi (x): n+1 elements
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General procedure

▶ Fix the order of the approximation n

▶ Find the coefficients α0, · · · ,αn

▶ Evaluate the approximation

▶ If necessary, increase n to get a better approximation
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Weierstrass (sloppy definition but true)

Let f : [a,b]−→ R be any real-valued function. For large
enough n, it is approximated arbitrarily well with the polynomial

n

∑
i=0

αix
i .

Thus, we can get an accurate approximation if

▶ f is not a polynomial

▶ f is discontinuous

How can this be true?
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How to find the coefficients of the approximating

polynomial?

▶ With derivatives:

▶ use the Taylor expansion

▶ With a set of points (nodes), x0, · · · ,xm, and function
values, f0, · · · , fm?
▶ use projection

▶ Lagrange way of writing the polynomial (see last part of
slides)
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Function fitting as a projection

Let

Y =

 f0
...
fm

 ,X =


T0(x0) T1(x0) · · · Tn(x0)
T0(x1) T1(x1) · · · Tn(x1)

...
...

. . .
...

T0(xm) T1(xm) · · · Tn(xm)


then

Y ≈ Xα

▶ We need m ≥ n+1. Is m = n+1 as bad as it is in
empirical work?

▶ What problem do you run into if n increases?
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Orthogonal polynomials

▶ Construct basis functions so that they are orthogonal to
each other, i.e.,

∫ b

a
Ti (x)Tj(x)w(x)dx = 0 ∀i , j ϶ i ̸= j

▶ This requires a particular weighting function (density),
w(x), and range on which variables are defined, [a,b]
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Chebyshev orthogonal polynomials

▶

[a,b] = [−1,1] and w(x) =
1

(1− x2)1/2

▶ What if function of interest is not defined on [−1,1]?
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Constructing Chebyshev polynomials

▶ The basis functions of the Chebyshev polynomials are
given by

T c
0 (x) = 1

T c
1 (x) = x

T c
i+1(x) = 2xT c

i (x)−T c
i−1(x) i > 1
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Chebyshev versus regular polynomials

▶ Chebyshev polynomials, i.e.,

f (x)≈
n

∑
j=0

ajT
c
j (x),

can be rewritten as regular polynomials, i.e.,

f (x)≈
n

∑
j=0

bjx
j ,
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Chebyshev nodes

▶ The nth−order Chebyshev basis function has n solutions to

T c
n (x) = 0

▶ These are the n Chebyshev nodes
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Discrete orthogonality property
▶ Evaluated at the Chebyshev nodes, the Chebyshev

polynomials satisfy:

n

∑
i=1

T c
j (xi )T

c
k (xi ) = 0 for j ̸= k

▶ Thus, if

X =


T0(x0) T1(x0) · · · Tn(x0)
T0(x1) T1(x1) · · · Tn(x1)

...
...

. . .
...

T0(xm) T1(xm) · · · Tn(xm)


then X ′X is a diagonal matrix
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Uniform convergence

▶ Weierstrass =⇒ there is a good polynomial approximation

▶ Weierstrass ⇏ f (x) = limn→∞ pn(x) for every sequence
pn(x)

▶ If polynomials are fitted on Chebyshev nodes=⇒ even
uniform convergence is guaranteed
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Splines

Inputs:

1. n+1 nodes, x0, · · · ,xn
2. n+1 function values, f (x0) · · · , f (xn)

▶ nodes are fixed =⇒ the n+1 function values are the
coefficients of the spline
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Piece-wise linear

▶ For x ∈ [xi ,xi+1]

f (x)≈
(
1− x− xi

xi+1− xi

)
fi +

(
x− xi

xi+1− xi

)
fi+1.

▶ That is, a separate linear function is fitted on the n
intervals

▶ Still it is easier/better to think of the coefficients of the
approximating function as the n+1 function values
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Piece-wise linear versus polynomial

▶ Advantage: Shape preserving

▶ in particular monotonicity & concavity (strict?)

▶ Disadvantage: not differentiable
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Extra material

1. Lagrange interpolation

2. Higher dimensional polynomials

3. Higher-order splines
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Lagrange interpolation

Let

Li (x) =
(x− x0) · · ·(x− xi−1)(x− xi+1) · · ·(x− xn)

(xi − x0) · · ·(xi − xi−1)(xi − xi+1) · · ·(xi − xn)
and

f (x)≈ f0L0(x)+ · · ·+ fnLn(x).

▶ Right-hand side is an nth-order polynomial

▶ By construction perfect fit at the n+1 nodes?

▶ =⇒ the RHS is the nth-order approximation
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Higher-dimensional functions

▶ second-order complete polynomial in x and y :

∑
0≤i+j≤2

ai ,jx
iy j

▶ second-order tensor product polynomial in x and y :

2

∑
i=0

2

∑
j=0

ai ,jx
iy j
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Complete versus tensor product

▶ tensor product can make programming easier

▶ simple double loop instead of condition on sum

▶ nth tensor has higher order term than (n+1)th complete

▶ 2nd-order tensor has fourth-order power

▶ at least locally, lower-order powers are more important
=⇒ complete polynomial may be more efficient
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Higher-order spline

Cubic (for example)

▶ !!! Same inputs as with linear spline, i.e. n+1 function
values at n+1 nodes which can still be thought of as the
n+1 coefficients that determine approximating function

▶ Now fit 3rd-order polynomials on each of the n intervals

f (x)≈ ai +bix + cix
2+dix

3 for x ∈ [xi−1,xi ].

What conditions can we use to pin down these coefficients?
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Cubic spline conditions: levels

▶ We have 2+2(n−1) conditions to ensure that the
function values correspond to the given function values at
the nodes.

▶ For the intermediate nodes we need that the cubic
approximations of both adjacent segments give the
correct answer. For example, we need that

f1 = a1+b1x1+ c1x
2
1 +d1x

3
1 and

f1 = a2+b2x1+ c2x
2
1 +d2x

3
1

▶ For the two endpoints, x0 and xn+1, we only have one
cubic that has to fit it correctly.
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Cubic spline conditions: 1st-order derivatives

▶ To ensure differentiability at the intermediate nodes we
need

bi+2cixi+3dix
2
i = bi+1+2ci+1xi+3di+1x

2
i for xi ∈{x1, · · · ,xn−1},

which gives us n−1 conditions.
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Cubic spline conditions: 2nd-order derivatives

▶ To ensure that second derivatives are equal we need

2ci +6dixi = 2ci+1+6di+1xi for xi ∈ {x1, · · · ,xn−1}.

▶ We now have 2+4(n−1) = 4n−2 conditions to find 4n
unknowns.

▶ We need two additional conditions; e.g. that 2nd-order
derivatives at end points are zero.

32 / 34



DSGE model Overview Func. Approx. Polynomial approximations Splines Extra

Splines - additional issues

▶ (standard) higher-order splines do not preserve shape

▶ higher-order difficult for multi-dimensional problems

▶ first-order trivial for multi-dimensional problems

▶ if interval is small then nondifferentiability often doesn’t
matter
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