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Numerical integration

2.1 Introduction

Numerical integration is a problem that is part of many problems in the
economics and econometrics literature. The organization of this chapter is
as follows. The �rst section covers quadrature procedures, which are the
dominant way to solve models. The second section covers (pseudo) Monte
Carlo integration techniques. The last section discusses quasi Monte Carlo
integration.

2.2 Quadrature techniques

Suppose we want to calculate

I =

Z b

a

f(x)dx; (2.1)

where f(x) is a scalar function. This could be a di¢ cult problem, e.g.,
because the functional form is nasty or because we do not even have a
functional form, but only a set of function values.
Quadrature techniques are numerical integration techniques for which

the formula of the numerical integral can be written as

I =

Z b

a

f(x)dx �
nX
i=1

wifi; (2.2)



ii 2. Numerical integration

where fi is the function value of f at node xi and wi is a weight. We
will discuss two types of quadrature techniques. The �rst is Newton-Cotes.
Newton-Cotes is not very careful about choosing the location of the nodes,
but is clever about choosing the weights. The second is Gaussian Quadra-
ture. This procedure is clever about choosing the weights as well as the
nodes. To implement quadrature methods you can forget the details of the
derivation. All you have to remember is how to construct what kind of
weights and this is easy.

2.2.1 Newton-Cotes Quadrature

Consider the integration problem given in Equation 2.1 and suppose that
one has three function values at three nodes. Given this information, how
would one calculate the integral? Well, one could calculate an approxi-
mating function and calculate the integral for this approximating function.
Since we have been given three points, we can calculate a second-order
polynomial, P2(x), and get an estimate for the integral usingZ b

a

f(x)dx �
Z b

a

P2(x)dx: (2.3)

Since integrating polynomials is easy, this procedure is straightforward.
But one still has to �nd the approximation and do the integration. It turns
out that these procedures can be standardized. That is, one can �nd the
weights in (2.2) independent of the functional form of f . They do depend
to some extend on the location of the nodes. We assume that x0 = a,
x1 = (a + b)=2, and x2 = b. That is, we have equidistant nodes and the
�rst (last) node is the left (right) boundary. We have two segments of equal
length, h and we can write x1 = x0 + h and x2 = x0 + 2h.
Recall from the chapter on function approximation, that using Lagrange

interpolation the second-order polynomial can be written as

P2(x) = f0L0(x) + f1L1(x) + f2L2(x): (2.4)

This means that our approximating integral is given byZ b

a

P2(x)dx =

Z b

a

(f0L0(x) + f1L1(x) + f2L2(x)) dx

= f0

Z b

a

L0(x)dx+ f1

Z b

a

L1(x)dx+ f2

Z b

a

L2(x)dx

The right-hand side already has the quadrature form as in Equation (2.2).
The weights are the integrals. Key is that the integrals, i.e., the weights,
do not depend on the function values. The nodes are pinned down by the
value of x0 and h. The beauty is that the integrals do not depend on x0
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either. Try to do the integration for one of them to ensure yourself that
this is true. In particular, it is not di¢ cult to show thatZ b

a

L0(x)dx =
1

3
hZ b

a

L1(x)dx =
4

3
hZ b

a

L2(x)dx =
1

3
h

Simpson quadrature

Combining the results we getZ b

a

f(x)dx �
Z b

a

P2(x)dx =

�
1

3
f0 +

4

3
f1 +

1

3
f2

�
h:

This will give you an accurate answer if the function f can be approximated
well with a second-order polynomial over the interval [a; b]. It will give
you an exact answer for any second-order polynomial. But clearly this
will not give you an accurate answer if the function you are integrating is
more complex. Sticking to the original idea of integrating approximating
polynomials, there are two ways to proceed. The �rst is to extend the
idea to higher-order polynomials. The other is to use the same idea but to
smaller intervals.
In particular, suppose that one has n + 1 equidistant nodes and the

distance between the nodes is h. The total number of nodes must be odd
so that there are n=2 segments of length 2h. On each of these segments of
length 2h one then applies the above procedure. This would giveZ b

a

f(x)dx �
�
1

3
f0 +

4

3
f1 +

1

3
f2

�
h

+

�
1

3
f2 +

4

3
f3 +

1

3
f4

�
h

+ � � �

+

�
1

3
fn�2 +

4

3
fn�1 +

1

3
fn

�
h

=

�
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 +

2

3
f4 + � � �

2

3
fn�2 +

4

3
fn�1 +

1

3
fn

�
h

2.2.2 Gaussian quadrature

In constructing the Simpson weights no thought went into choosing the
location of the nodes. We simply started with equidistant nodes and calcu-
lated the formulas for the weights. Writing the code to implement Newton-
Cotes is so easy, because the weights only depend on h and not on x0. But
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by being smart about choosing the nodes we can do even better. That is
we can get a more accurate answer with the same number of points. To
be precise, if n is the number of nodes, then the following is true. With
Newton-Cotes quadrature we get an exactly correct answer if the function
we are integrating is a polynomial of order n � 1, whereas with Gaussian
quadrature we get an exactly correct answer if the function we are inter-
ested in is a polynomial of order 2n � 1. For example, if we have 5 nodes
then we get an exact answer for all polynomials of order 9 (or less) and
we get an accurate answer for functions that can be approximated well
with a 9th -order polynomial. Given that we can cover quite a few functions
with 9th -order polynomials, you better be impressed about the power and
simplicity of Gaussian quadrature.
To understand the procedure, suppose we want to integrate a scalar

function de�ned on [�1; 1] using the quadrature formula with n nodes.
Thus, Z 1

�1
f(x)dx �

nX
i=1

!if(�i): (2.5)

Note that we have 2n free parameters, namely the !is (the weights) and
the �is (the nodes). We want to get the correct answer for any polynomial
of order 2n � 1. To accomplish this, we choose the values of !i and �i so
that by construction we get the correct answer for all the basis functions,
that is, for 1, x, x2, � � � , and x2n�1. But if we get the correct answer for
all basis functions, we get the correct answer for any combination. That
is, one gets the correct answer for any polynomial of order 2n � 1. To see
why, suppose that we have found the !is and the �is such that applying
the formula in Equation 2.5 for f(x) = x4 gives the right answer, that isZ 1

�1
x4dx =

nX
i=1

!i�
4
i : (2.6)

But this means that we also get the right answer for f(x) = �x4 for any
value of �. To see why our approximation now would be

nX
i=1

!i��
4
i = �

nX
i=1

!i�
4
i : (2.7)

That is our approximation is the answer for f(x) = x4 times �. Since the
integral of �f(x) is indeed equal � times the integral of f(x) we get the
right answer. Similarly, we get the right answer for any combination of
polynomial basis functions.
But we still have to �nd the !is and the �is that give us the correct

answer for the basis functions. That will be the case if the following is true:Z 1

�1
xjdx =

nX
i=1

!i�
j
i j = 0; 1; � � � ; 2n� 1 (2.8)
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This is a system of 2n equations in 2n unknowns. The important thing to
realize is that the solution to this system of equations does not depend on
f . That is, independent of the particular function one is considering, one
uses the same values for the !is and the �is. In fact, there are standard
subroutines available to solve for the quadrature nodes and weights.

Gauss-Legendre

The procedure discussed above that calculated the integral of a function
over the interval [�1; 1] is called Gauss-Legendre. So in practice one would
do the following. One would use a numerical procedure to generate the !is
and the �is. The generated values will satisfy (2.8), but you don�t have to
worry about how the algorithm makes that happen. Let the solution be !GLi
and �GLi . The only thing that you have to do is to obtain function values at
the indicated nodes and calculate the approximation to the integral using
the quadrature formula, that isZ 1

�1
f(x)dx �

nX
i=1

!GLi f(�GLi ): (2.9)

Gauss-Hermite

Gauss-Legendre will give an accurate answer if f(x) can be approximated
well with a polynomial. Now suppose that one wants to integrate a function
f(x) that can be written as g(x) �W (x) and one knows that g(x) can be
approximated well with a polynomial but g(x) �W (x) cannot. In this case,
it would not be smart to use Gauss-Legendre. Instead one would want to
adjust the procedure to take this into account. There are di¤erent Gaussian
quadrature procedure that do exactly this for di¤erent weighting functions,
W (x), and di¤erent domains. An important one is Gauss-Hermite for which
the weighting function is e�x

2

and the domain is the real line. For Gauss-
Hermite the weights and the nodes are chosen to satisfyZ 1

�1
xje�x

2

dx =

nX
i=1

!i�
j
i j = 0; 1; � � � ; 2n� 1 (2.10)

Let the solution be !GHi and �GHi . So the approximation would be given
by Z 1

�1
g(x)e�x

2

dx �
nX
i=1

!GHi g(�gh;i): (2.11)

Make sure you understand why there is an �=�in Equation (2.10) and an
���in Equation (2.11). In the �rst equation we are choosing the !is and
the �is so that our approximating formula, i.e. Equation (2.11) will give
the correct answer for particular choices of g(x), namely polynomial basis
functions. But unless g(x) is a polynomial, the quadrature formula is an
approximation.
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Gauss-Chebyshev

Another Gaussian quadrature procedure is Gauss-Chebyshev that deals
with Z 1

�1
g(x)

1

(1� x2)1=2 dx

Quadrature nodes

The nodes that solve the problems discussed here turn out to be the zeros
of the basis functions of the corresponding Orthogonal polynomial. That
is, the Chebyshev nodes that solveZ 1

�1
xj

1

(1� x2)1=2 dx =
nX
i=1

!i�
j
i j = 0; 1; � � � ; 2n� 1

are exactly the same as the Chebyshev nodes discussed in the chapter
on approximating functions, although it goes a bit to far to explain why.

2.2.3 Change in variable

Suppose one wants to calculate the expectation of h (y), i.e., E[h(y)] ; where
y is a random variable with a N(�; �2) distribution. That is one wants to
calculate Z 1

�1

1

�
p
2�
h(y) exp

�
� (y � �)

2

2�2

�
dy

Also, suppose that h(y) is a function that one expects can be approxi-
mated well with a polynomial. This problem resembles a Gauss-Hermite
quadrature problem but not exactly. One might be tempted to make it a
Gauss-Hermite problem simply by de�ning

h(y) =
h(y)

�
p
2�

exp
�
� (y��)2

2�2

�
exp (�y2)

and considering the identical integralZ 1

�1
h(y) exp

�
�y2

�
dy:

But note that it was given that h(y) could be approximated well with a
polynomial, not that h(y) can be. In fact, given that exp(�y2) is not like
a polynomial, h(y) may be approximated very poorly with a polynomial.
So the appropriate way to go is to do a change of variables. This is very

easy but don�t forget the Jacobian. That is, if y = �(x) thenZ b

a

g(y)dy =

Z ��1(b)

��1(a)

g(�(x))�0(x)dx
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The transformation we use here is

x =
y � �
�
p
2
or y = �

p
2x+ �

This gives

E [h(y)] =

Z 1

�1

1

�
p
2�
h(y) exp

�
� (y � �)

2

2�2

�
dy

=

Z 1

�1

1

�
p
2�
h(
p
2�x+ �) exp

�
�x2

�
�
p
2dy

=

Z 1

�1

1p
�
h(
p
2�x+ �) exp

�
�x2

�
dy

What to do in practice?

So what would you do in practice if one wants to evaluate E[h(y)]. First, one
obtains n Gauss-Hermite quadrature weights and nodes using a numerical
algorithm. Second, one gets an approximation using

E [h(y)] �
nX
i=1

1p
�
!GHi h

�p
2��GHi + �

�
(2.12)

and do not forget to divide by
p
�! Well, how often do you get something

in life so complex as an integral so easily?

2.3 Monte Carlo Integration

The idea behind Monte Carlo integration is very simple. Consider a random
variable x with CDF F (x). Then one can approximate the integral of the
function h(x) with Z b

a

h(x)dF (x) �
PT

t=1 h(xt)

T
; (2.13)

where fxtgTt=1 is a series drawn from a random number generator corre-
sponding to the distribution of x. Although very simple there is one im-
portant disadvantage: it is not very accurate. Above we saw that we can
get an accurate answer with just a few quadrature nodes for a large class
of functions. Monte Carlo is subject to sampling variation and this only
disappears at root n. Suppose we calculate the mean of a random variable
with a uniform distribution on the unit interval. With T = 100 the stan-
dard error is 0.029 which is 5.8% of the true mean. Even with T = 1; 000
we have a standard error that is 1.8% of the true mean.
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If one doesn�t have a CDF then one can use a uniform distribution. That
is, Z b

a

h(x)dx = (b� a)
Z b

a

h(x)fab(x)dx; (2.14)

where fab is the density of a random variable with a uniform distribution
over [a; b], that is, fab = (b�a)�1. Thus, one could approximate the integral
with Z b

a

h(x)dx � (b� a)
PT

t=1 h(xt)

T
; (2.15)

where xt is generated using a random number generator for a variable that
is uniform on [a; b].
Typically one doesn�t have access to true random numbers and one only

has access to a computer program that generates them. Therefore, these
procedures are also referred to pseudo random numbers. The computer
program generates data that are (if it is a good program) indistinguishable
from a true series of random numbers. But the function that generates
the series is deterministic (and chaotic) so that one should be careful in
using theorems for true random numbers to think about things like rates
of convergence.

2.4 Multivariate problems and quasi Monte Carlo
integration

It is straightforward to extend the idea of quadrature techniques to higher
dimensional problems. The number of nodes increases exponentially, how-
ever, which means that it becomes computationally quickly very expensive.
With Monte Carlo integration one does not seem to have this problem. That
is the mean of h(xt) and the mean of h(xt; zt) both converge towards its
mean at rate

p
T .

Think of a numerical integration problem as choosing nodes and then
taking a (weighted) average. By extending the quadrature techniques de-
rived for scalar functions to multivariate problems one doesn�t �ll in the
space with nodes in the most e¢ cient way.
Building on the idea of pseudo Monte Carlo new techniques have been

developed that �ll in the space better. The starting point of quasi Monte
Carlo integration is to generate equidistributed series. A scalar sequence
fxtgTt=1 is equidistributed over [a; b] i¤

lim
T�!1

b� a
T

TX
t=1

f(xt) =

Z b

a

f(x)dx (2.16)

for all Rieman-integrable f(x). Note the similarity with Equation (2.15).
There are several examples of equidistributed series. For example the se-



2.4 Multivariate problems and quasi Monte Carlo integration ix

quence (�; 2�; 3�; 4�; � � � ) is equidistributed modulo 1 for any irrational num-
ber �.1 Another example is the sequence of prime numbers multiplied by
an irrational number (2�; 3�; 5�; 7�; � � � ).
For a d-dimensional problem, an equidistributed sequence fxtgTt=1 � D �

Rd satis�es

lim
T�!1

�(D)

T

TX
t=1

f(xt) =

Z
D

f(x)dx; (2.17)

where �(D) is the Lebesque measure of D.2

Some examples for equidistributed vectors on the d-dimensional unit
hypercube are the following.
Weyl:

xt = (t
p
p1; t

p
p2; � � � ; t

p
pd) modulo 1, (2.18)

where pi is the ith positive prime number.
Neiderreiter:

xt = (t2
1=(d+1); 22=(d+1); � � � ; t2d=(d+1)) modulo 1

Equidistributed vectors for other hypercubes can be done using linear trans-
formations.

1Frac(x) (or x Modulo 1) means that we subtract the largest integer that is less than
x. For example, frac(3:564) = 0:564:

2To see why you have to multiply the sum with �(D) just consider the case when
f(x) = 1 8x. Then we know the integral should be equal to �(D) which we get becausePT
t=1 f(x)=T = 1:


