Projection

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Model

$$c_t^{-\nu} = \mathsf{E}_t \left[\beta c_{t+1}^{-\nu} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right]$$

$$c_t + k_{t+1} = z_t k_t^{\alpha}$$

$$\ln(z_{t+1}) = \rho \ln(z_t) + \varepsilon_{t+1}$$

$$\varepsilon_{t+1} \sim N(0, \sigma^2)$$

$$k_1, z_1 \text{ given}$$

How many equations are there on this slide?

Projection Methods

True rational expectations solution:

$$c_t = c(k_t, z_t)$$

$$k_{t+1} = k(k_t, z_t)$$

• Why a difficult problem to find these?

Define error terms

$$e(k_t, z_t) = -c_t^{-\nu} + \mathsf{E}_t \left[\beta c_{t+1}^{-\nu} \alpha z_{t+1} k_{t+1}^{\alpha - 1} \right]$$

At the true solutions, $c(k_t, z_t)$ and $k(k_t, z_t)$:

$$e\left(k_{t},z_{t}\right)=0 \,\,\forall k_{t},z_{t}$$

 Structural parameters (α, β, ρ, σ) have fixed numerical values (thus not included as arguments in policy function)

$$c_t = c(k_t, z_t) \approx P_n(k_t, z_t; \eta_n)$$

- $P_n(\cdot)$: from class of approximating functions
 - such as polynomials or splines
 - *n* is fixed \implies solve for η_n , a *finite-dimensional* object

Which equations to use?

- goal: solve for $P_n(k_t, z_t; \eta_n) \approx c(k_t, z_t)$,
 - i.e., N_n elements of η_n
 - $k(k_t, z_t)$ implicitly defined by budget constraint
- One first-order equation left, namely Euler equation
 - this is a different equation at each point in the state space
 - \implies plenty of equations

Which equations to use?

• At M grid points $\{k_i, z_i\}$ with $M \ge N_n$ we would like the following to equal zero:

$$e(k_i, z_i; \eta_n) = -P_n(k_i, z_i; \eta_n)^{-\nu} + \\ \mathsf{E} \begin{bmatrix} \alpha \beta \times \\ P_n(\{k'\}, \{z'\}; \eta_n)^{-\nu} \times \\ \{z'\} \times \\ (\{k'\})^{\alpha - 1} \end{bmatrix}$$

Which equations to use?

• **Goal:** \forall grid point get an expression with η_n as only unknown

$$e(k_i, z_i; \eta_n) = -P_n(k_i, z_i; \eta_n)^{-\nu} + \begin{bmatrix} \alpha \beta \times \\ P_n(\mathbf{k}', \mathbf{z}'; \eta_n)^{-\nu} \times \\ \mathbf{z}' \times \\ (\mathbf{k}')^{\alpha - 1} \end{bmatrix}$$

• Note that k_i and z_i are known

Е

Which equations to use?

$$e(k_i, z_i; \eta_n) = -P_n(k_i, z_i; \eta_n)^{-\nu} + \alpha\beta \times P_n(z_ik_i^{\alpha} - P_n(k_i, z_i; \eta_n), \exp\{\rho \ln(z_i) + \varepsilon'\}; \eta_n)^{-\nu} \times \exp\{\rho \ln(z_i) + \varepsilon'\} \times (z_ik_i^{\alpha} - P_n(k_i, z_i; \eta_n))^{\alpha - 1}$$

 $\sum_{j=1}^{J}$

How to deal with expectations operator?

Let $\{\omega_j, \zeta_j\}_{j=1}^J$ be the Hermite Gaussian quadrature nodes

$$e(k_i, z_i; \eta_n) = -P_n(k_i, z_i; \eta_n)^{-\nu} + \alpha\beta \times$$

$$P_n(z_i k_i^{\alpha} - P_n(k_i, z_i; \eta_n), \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}; \eta_n)^{-\nu} \times \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\} \times (z_i k_i^{\alpha} - P_n(k_i, z_i; \eta_n))^{\alpha - 1} \omega_j / \sqrt{\pi}$$

Define error terms

$$e(k_i, z_i; \eta_n) = -P_n(k_i, z_i; \eta_n)^{-\nu} + \alpha\beta \times$$

$$\sum_{j=1}^{J} \begin{bmatrix} \rho_n(z_i k_i^{\alpha} - P_n(k_i, z_i; \eta_n), \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}; \eta_n)^{-\nu} \times \\ \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\} \times \\ (z_i k_i^{\alpha} - P_n(k_i, z_i; \eta_n))^{\alpha - 1} \\ \omega_j / \sqrt{\pi} \end{bmatrix}$$

How to find coefficients of approximation?

- True rational expect. solution gives zero error term $\forall (k_i, z_i)$
- Thus, choose η_n such that error terms are as small as possible.
- Collacation $(M = N_n)$: Use equation solver to get errors exactly equal to zero on grid
- Galerkin $(M > N_n)$: Use minimization routine (and possibly smart weighting of error terms)

Different types of approximating functions

- $P_n(k_i, z_i; \eta_n)$ could be polynomial or spline
- dimension η_n usually higher for splines
 - may make eq. solver/minimization less appropriate
 - use iteration scheme instead

How to find coefficients of approximation?

- Equation solver or minimization routine
- **②** Iteration procedures
 - fixed-point iteration
 - 2 time iteration

Iterating versus eq. solver/minimization

• Advantage:

- less of a black box
- can deal with many coefficients
 - e.g. when spline is used
- some iteration schemes are guaranteed to converge
 - under some regularity conditions
- Disadvantage:
 - does not use information on how best to update

Iteration procedure: Construct Grid

- Construct a grid with nodes for k and z
- At the nodes construct the basis functions of $P_n(k, z; \eta_n)$.
- For example, if

$$P_n(k, z; \eta_n) = \eta_{0,n} + \eta_{k,n}k + \eta_{z,n}z + \eta_{kk}k^2 + \eta_{kz}kz + \eta_{zz}z^2$$

then construct the matrix (where subscripts denote grid numbers)

$$X = \begin{bmatrix} 1 & k_1 & z_1 & k_1^2 & k_1 z_1 & z_1^2 \\ 1 & k_2 & z_2 & k_2^2 & k_2 z_2 & z_2^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & k_M & z_M & k_M^2 & k_M z_M & z_M^2 \end{bmatrix}$$

and calculate $(X'X)^{-1}X'$

Iteration procedure: Construct Grid

- **Chebyshev nodes:** Using Chebyshev nodes is important. This ensures uniform convergence. With equidistant nodes it is possible that the oscillations between grid point explode as the order of the polynomial increases.
- Chebyshev polynomials: If you have (i) no problems finding initial conditions and (ii) only low-order appoximations so that calculating the inverse of X'X can be done accurately, then you can use regular polynomials. Orthogonal Chebyshev polynomials can overcome these problems. They ensure that X'X is diagonal (and trivial to invert). This does require scaling of the state variables so they are between -1 and 1.

Fixed-point Iteration

- Step 1: Calculate current consumption values implied by η_n^{j-1} at each grid point
 - Use η_n^{q-1} to calculate $k' = z_i k_i^{\alpha} P_n(k_i, z_i; \eta_n^{q-1})$
 - Use η_n^{q-1} to calculate $c' = P_n(k', z'; \eta_n^{q-1})$ for every (k', z') combination you'll encounter
 - Then, get c_i from

 $\sum_{j=1}^{J}$

$$(c_i)^{-\nu} =$$

$$\alpha\beta \times$$

$$P_n(z_ik_i^{\alpha} - P_n(k_i, z_i; \eta_n^{q-1}), \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}; \eta_n^{q-1})^{-\nu} \times$$

$$\exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\} \times$$

$$\left(z_ik_i^{\alpha} - P_n(k_i, z_i; \eta_n^{q-1})\right)^{\alpha-1}$$

$$\omega_j/\sqrt{\pi}$$

Fixed-point iteration

Step 2: Get new estimate for η_n by running a projection step

• Let
$$Y = [c_1, c_2, \cdots, c_M]'$$

• If

$$P_n(k, z; \eta_n) = \eta_{0,n} + \eta_{k,n}k + \eta_{z,n}z + \eta_{kk}k^2 + \eta_{kz}kz + \eta_{zz}z^2$$

then

$$\hat{\eta}_n^q = \left(X'X \right)^{-1} X'Y$$

Fixed-point iteration

Step 3: Update η_n

$$\eta_n^q = \lambda \widehat{\eta}_n^q + (1 - \lambda) \eta_n^{q-1}$$
 for $0 < \lambda \le 1$

- Fixed-point iteration does not always converge
 - Choosing a lower value of λ :
 - convergence more likely
 - slows down algorithm if lower value not needed for convergence
- Alternative is time iteration

Time Iteration

- At each grid point use η_n^{q-1} ONLY for *next period's* choices
- Again solve for c_i at each grid point
 - this is now a bit trickier (non-linear problem)
- Get n_n^q as with fixed-point iteration
 - guaranteed to converge without dampening (under regularity conditions)

Time Iteration - solving for c

Solve c_i from following non-linear equation

$$(c_i)^{-\nu} = \sum_{j=1}^{J} \begin{bmatrix} \alpha \beta \times \\ P_n(z_i k_i^{\alpha} - c_i, \exp\{\rho \ln(z_i) + \sqrt{2}\sigma \zeta_j\}; \eta_n^{q-1})^{-\nu} \times \\ \exp\{\rho \ln(z_i) + \sqrt{2}\sigma \zeta_j\} \times \\ (z_i k_i^{\alpha} - c_i))^{\alpha - 1} \\ \omega_j / \sqrt{\pi} \end{bmatrix}$$

Time Iteration

- Natural interpretation for η_n^{q-1} and η_n^q , namely
 - η_n^{q-1} is tomorrow's policy function and
 - η_n^q is today's policy function
- Time iteration is reliable and convergent
 - (the proof is related to the convergence of value function iteration, which uses the same idea)

Fixed-point versus time iteration

- Fixed-point iteration uses η_n^{q-1} for *all* terms on the RHS, i.e., both next period's consumption choice and today's capital choice
- Time iteration uses η_n^{q-1} only to evaluate next period's consumption
- The structure of time iteration mimics the choice of value function iteration:
 - next period's behavior described by previous solution for value function
 - Bellman equation used to solve for choice of *c* and *k simultaneously*

Endogenous grid points

- Simple idea: construct grid for k' instead of a grid for k
- Instead of solving for the choice k' given k, we now solve for the value of k that would have led to the choice k'
- In both cases you end up at each grid point with a set of values for k and a set of corresponding values for k'.
- Terminology is a bit confusing: the grid itself is exogenous and fixed but it is for an endogenous variable
- Advantage: Time iteration does not require an equation solver; k can be solved analytically.

Endogenous grid points and time iteration

- Approximation: $k' = P_n(k, z; \eta_n)$
- Time iteration ⇒ use η_n^{q-1} for tomorrow's choice of capital only and calculate a value for k at each grid point
- Given the grid for $\{k', z\}$ and the calculated values for k update values of the elements of η_n .

Endogenous grid points and time iteration

$$(c_i)^{-\nu} = \sum_{j=1}^{J} \begin{bmatrix} \alpha\beta \\ \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}(k'_i)^{\alpha} - \\ P_n(k'_i, \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}; \eta_n^{q-1}) \end{bmatrix}^{-\nu} \\ \times \exp\{\rho \ln(z_i) + \sqrt{2}\sigma\zeta_j\}(k'_i)^{\alpha-1}\omega_j/\sqrt{\pi} \end{bmatrix}$$

and k_i from

$$k_i' + c_i = z_i k_i^{\alpha}$$

The values of k'_i and z_i remain the same but the values of c_i and k_i would change together with η_n^q through the iteration procedure (until convergence)

Perturbation versus projection

- Nondifferentiabilities
 - impossible for perturbation
- Large number of state variables
 - difficult for projection
- Constructing the grid can be difficult
 - apriori hard to know what sensible points are
 - some calculations may not be well defined everywhere

Perturbation versus projection

- Global versus local
 - Projection designed to be global method
 - Perturbation designed to be local method
 - but could give accurate global approximation
 - question is whether (lower-order) derivatives at perturbation point capture global behavior

When can't you use projection methods?

- Not all solutions to optimization problems can be characterized by first-order conditions
 - e.g. when objective function is not concave or budget set not convex
 - then you have no choice but to use Value Function Iteration

When can't you use projection methods?

- Constructing a grid where all calculations are well defined may be tough
 - e.g., not get negative consumption/unemployment
 - this can be tough even at the true solution
 - calculations should be possible also on path towards solution
- Solutions
 - Simply exclude problematic grid points (works for Galerkin)
 - Endogenize grid using simulations (Parameterized expectations)
 - but simulated points cluster so you are likely to get worse convergence properties

References

- Heer, B., and A. Maussner, 2009, Dynamic General Equilibrium Modeling.
- Judd, K. L., 1998, Numerical Methods in Economics.
- Rendahl, P., 2006, Inequality constraints in recursive economies.
 - shows that time-iteration converges even in the presence of inequality constraints