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Overview

• A bit of history of economic thought
• How expectations are formed can matter in the long run

• Seignorage model

• Learning without feedback
• Learning with feedback

• Simple adaptive learning
• Least-squares learning
• Bayesian versus least-squares learning
• Decision theoretic foundation of Adam & Marcet
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Overview continued

Topics

• Learning & PEA
• Learning & sunspots
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Why are expectations important?

• Most economic problems have intertemporal consequences
• =⇒ future matters

• Moreover, future is uncertain
• Characteristics/behavior other agents can also be uncertain

• =⇒ expectations can also matter in one-period problems
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History of economic thought

• adaptive expectations:

Êt [xt+1] = Êt−1 [xt] +ω
(

xt − Êt−1 [xt]
)

• very popular until the 70s

5 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

History of economic thought

problematic features of adaptive expectations:

• agents can be systematically wrong
• agents are completely passive:

• Êt
[
xt+j

]
, j ≥ 1 only changes (at best) when xt changes

• =⇒ Pigou cycles are not possible
• =⇒ model predictions underestimate speed of adjustment
(e.g. for disinflation policies)
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History of economic thought

problematic features of adaptive expectations:

• adaptive expectations about xt+1 6= adaptive expectations
about ∆xt+1

• (e.g. price level versus inflation)

• why wouldn’t (some) agents use existing models to form
expectations?

• expectations matter but still no role for randomness (of future
realizations)

• so no reason for buffer stock savings
• no role for (model) uncertainty either
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History of economic thought

rational expectations became popular because:

• agents are no longer passive machines, but forward looking
• i.e., agents think through what could be consequences of their
own actions and those of others (in particular government)

• consistency between model predictions and of agents being
described

• randomness of future events become important

• e.g., Et

[
c−γ

t+1

]
6= (Et [ct+1])

−γ
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History of economic thought

problematic features of rational expectations

• agents have to know complete model
• make correct predictions about all possible realizations

• on and off the equilibrium path

• costs of forming expectations are ignored
• how agents get rational expectations is not explained
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History of economic thought

problematic features of rational expectations

• makes analysis more complex
• behavior this period depends on behavior tomorrow for all
possible realizations

• =⇒ we have to solve for policy functions, not just simulate the
economy

10 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

Expectations matter

• Simple example to show that how expectations are formed can
matter in the long run

• See Adam, Evans, & Honkapohja (2006) for a more elaborate
analysis
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Model

• Overlapping generations
• Agents live for 2 periods
• Agents save by holding money
• No random shocks
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Model

max
c1,t,c2,t

ln c1,t + ln c2,t

s.t.

c2,t ≤ 1+
Pt

Pe
t+1

(2− c1,t)

no randomness =⇒ we can work with expected value of variables
instead of expected utility
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Agent’s behavior

First-order condition:

1
c1,t

=
Pt

Pe
t+1

1
c2,t

=
1

πe
t+1

1
c2,t

Solution for consumption:

c1,t = 1+ πe
t+1/2

Solution for real money balance (=savings):

mt = 2− c1,t = 1− πe
t+1/2
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Money supply

Ms
t = M
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Equilibrium

Equilibrium in period t implies

M = Mt

M = Pt
(
1− πe

t+1/2
)

Pt =
M

1− πe
t+1/2
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Equilibrium

Combining with equilibrium in period t− 1 gives

πt =
Pt

Pt−1
=

1− πe
t/2

1− πe
t+1/2

Thus: πe
t & πe

t+1 =⇒ money demand =⇒ actual inflation πt
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Rational expectations solution
Optimizing behavior & equilibrium:

Pt

Pt−1
= T(πe

t , πe
t+1)

Rational expectations equilibrium (REE):

πt = πe
t

=⇒
πt = T(πt, πt+1)

=⇒
πt+1 = 3− 2

πt
πt+1 = R (πt)
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Multiple steady states

• There are two solutions to

π = 3− 2
π

=⇒ there are two steady states

• π = 1 (no inflation) and perfect consumption smoothing
• π = 2 (high inflation), money has no value & no consumption
smoothing at all
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Unique solution

• Initial value for πt not given, but given an initial condition the
time path is fully determined

• πt converging to 2 means mt converging to zero and Pt
converging to ∞
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Rational expectations and stability
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Rational expectations and stability

π1 : value in period 1

π1 < 1 : divergence

π1 = 1 : economy stays at low-inflation steady state

π1 > 1 : convergence to high-inflation steady state
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Alternative expectations

• Suppose that

πe
t+1 =

1
2

πt−1 +
1
2

πe
t

• still the same two steady states, but
• π = 1 is stable
• π = 2 is not stable
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Adaptive expectations and stability
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Learning without feedback

Setup:

1 Agents know the complete model, except
they do not know dgp exogenous processes

2 Agents use observations to update beliefs

3 Exogenous processes do not depend on beliefs
=⇒ no feedback from learning to behavior of variable being
forecasted
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Learning without feedback & convergence

• If agents can learn the dgp of the exogenous processes, then
you typically converge to REE

• They may not learn the correct dgp if
• Agents use limited amount of data
• Agents use misspecified time series process
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Learning without feedback - Example

• Consider the following asset pricing model

Pt = Et [β (Pt+1 +Dt+1)]

• If
lim

j−→∞
βt+jDt+j = 0

then

Pt = Et

[
∞

∑
j=1

βjDt+j

]
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Learning without feedback - Example

• Suppose that

Dt = ρDt−1 + εt, εt ∼ N(0, σ2) (1)

• REE:
Pt =

Dt

1− βρ

(note that Pt could be negative so Pt is like a deviation from steady
state level)
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Learning without feedback - Example

• Suppose that agents do not know value of ρ

• Approach here:
• If period t belief = ρ̂t, then

Pt =
Dt

1− βρ̂t

• Agents ignore that their beliefs may change,

• i.e., Êt
[
Pt+j

]
=Et

[
Dt+j

1−βρ̂t+j

]
is assumed to equal

1
1−βρ̂t

Et
[
Dt+j

]
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Learning without feedback - Example

How to learn about ρ?

• Least squares learning using {Dt}T
t=1 & correct dgp

• Least squares learning using {Dt}T
t=1 & incorrect dgp

• Least squares learning using {Dt}T
t=T−T̄ & correct dgp

• Least squares learning using {Dt}T
t=T−T̄ & incorrect dgp

• Bayesian updating (also called rational learning)
• Lots of other possibilities
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Convergence again

• Suppose that the true dgp is given by

Dt = ρtDt−1 + εt

ρt ∈
{

ρlow, ρhigh

}
ρt+1 =

{
ρhigh w.p. p(ρt)

ρlow w.p. 1− p(ρt)

• Suppose that agents think the true dgp is given by

Dt = ρDt−1 + εt

• =⇒ Agents will never learn
(see homework for importance of sample used to estimate ρ)
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Recursive least-squares

• time-series model:
yt = x′tγ+ ut

• least-squares estimator

γ̂T = R−1
T

X′TYt

T

where

X′T =
[

x1 x2 · · · xT
]

Y′T =
[

y1 y2 · · · yT
]

RT = X′TXT/T
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Recursive least-squares

RT = RT−1 +
(xTx′T − RT−1)

T

γ̂T = γ̂T−1 +
R−1

T xT (yT − x′Tγ̂T−1)

T
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Proof for R

X′TXT
T

?
=

X′T−1XT−1
(T−1) +

xTx′T
T −

X′T−1XT−1
T(T−1)(T−1

T
)

X′TXT
?
= X′T−1XT−1 +

T−1
T xTx′T −

X′T−1XT−1
T

X′TXT −
X′TXT

T
?
= X′T−1XT−1 + xTx′T −

xTx′T
T −

X′T−1XT−1
T

X′T−1XT−1 + xTx′T
−X′T−1XT−1+xTx′T

T

?
=

X′T−1XT−1 + xTx′T
−xTx′T+X′T−1XT−1

T
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Proof for gamma

(X′TXT)
−1

× X′TYT

?
=

(
X′T−1XT−1

)−1 X′T−1YT−1+

(X′TXT)
−1

(
xTyT

−xTx′T
(
X′T−1XT−1

)−1 X′T−1YT−1

)

X′TYT
?
=

(
X′T−1XT−1 + xTx′T

) (
X′T−1XT−1

)−1 X′T−1YT−1

+

(
xTyT

−xTx′T
(
X′T−1XT−1

)−1 X′T−1YT−1

)

X′TYT
?
=

(
I+ xTx′T

(
X′T−1XT−1

)−1
)

X′T−1YT−1

+

(
xTyT

−xTx′T
(
X′T−1XT−1

)−1 X′T−1YT−1

)
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Reasons to adopt recursive formulation

• makes proving analytical results easier
• less computer intensive,

• but standard LS gives the same answer

• there are intuitive generalizations:

RT = RT−1 +ω(T)
(
xTx′T − RT−1

)
γ̂T = γ̂T−1 +ω(T)R−1

T xT
(
yT − x′Tγ̂T−1

)
ω(T) is the "gain"
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Learning with feedback

1 Explanation of the idea

2 Simple adaptive learning

3 Least-squares learning

• E-stability and convergence

4 Bayesian versus least-squares learning

5 Decision theoretic foundation of Adam & Marcet
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Learning with feedback - basic setup

Model:
pt = ρÊt−1 [pt] + δxt−1 + εt

RE solution:

pt =
δ

1− ρ
xt−1 + εt

= arext−1 + εt
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What is behind model

Model:
pt = ρÊt−1 [pt] + δxt−1 + εt

Stories:

• Lucas aggregate supply model

• Muth market model

See Evans and Honkapohja (2009) for details
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Learning with feedback - basic setup

Perceived law of motion (PLM) at t− 1:

pt = ât−1xt−1 + εt (2)

Actual law of motion (ALM):

pt = ρât−1xt−1 + δxt−1 + εt = (ρât−1 + δ) xt−1 + εt (3)
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Updating beliefs I: Simple adaptive

ALM: pt = (ρât−1 + δ) xt−1 + εt

Simple adaptive learning:

• ât = ρât−1 + δ

• could be rationalized if
• agents observe xt−1 and εt
• t is more like an iteration and in each iteration agents get to
observe long time-series to update
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Simple adaptive learning: Convergence

ât = ρât−1 + δ

or in general
ât − ât−1 = T (ât−1)
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Simple adaptive learning: Convergence

Key questions:

1 Does ât converge?

2 If yes, does it converge to a ?

Answers: If |ρ| < 1, then the answer to both is yes.
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Updating beliefs: LS learning

Suppose agents use least-squares learning

ât = ât−1 +
R−1

t xt−1 (pt − xt−1ât−1)

t

= ât−1 +
R−1

t xt−1 ((ρât−1 + δ) xt−1 + εt − xt−1ât−1)

t

Rt = Rt−1 +
(xt−1xt−1 − Rt−1)

t
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Updating beliefs: LS learning

ât = ât−1 +
1
t

R−1
t xt−1 (pt − xt−1ât−1)

= ât−1 +
1
t

R−1
t xt−1 ((ρât−1 + δ) xt−1 + εt − xt−1ât−1)

Rt = Rt−1 +
1
t
(xt−1xt−1 − Rt−1)

To get system with only lags on RHS, let Rt = St−1

ât = ât−1 +
1
t

S−1
t−1xt−1 ((ρât−1 + δ) xt−1 + εt − xt−1ât−1)

St = St−1 +
1
t
(xtxt − St−1)

t
t+ 1
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Updating beliefs: LS learning

Let

θt =

[
at
St

]
Then the system can be written as

θ̂t = θ̂t−1 +
1
t

Q(θ̂t−1, xt, xt−1, εt)

or

∆θ̂t = T(θ̂t−1, xt, xt−1, εt, t)

Note that

T (·) = 1
t

Q (·)
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Key question

• If

∆θ̂t =
1
t

Q(θ̂t−1, xt, xt−1, εt, t)

then what can we "expect": about θ̂t?

• In particular, can we "expect" that

lim
t−→∞

ât = are
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Corresponding differential equation

Much can be learned from following differential equation

dθ

dτ
= h (θ (τ))

where
h (θ) = lim

t→∞
E [Q(θ, xt, xt−1, εt)]
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Corresponding differential equation

In our example

h (θ) = lim
t→∞

E [Q(θ, xt, xt−1, εt)]

= lim
t→∞

E
[

S−1xt−1 ((ρa+ δ) xt−1 + εt − xt−1a)
(xtxt − S) t

t+1

]

=

[
MS−1 ((ρ− 1) a+ δ)

M− S

]
where

M = lim
t→∞

E
[
x2

t

]
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Analyze the differential equation

dθ

dτ
= h (θ (τ)) =

[
MS−1 ((ρ− 1) a+ δ)

M− S

]

dθ

dτ
= 0 if M = S & a =

δ

1− ρ

Thus, the (unique) rest point of h (θ) is the rational expectations
solution
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E-stability

θ̂t − θ̂t−1 =
1
t

Q
(

θ̂t−1, xt, xt−1, εt, t
)

Limiting behavior can be analyzed using

dθ

dτ
= h(θ(τ)) = lim

t→∞
E [Q(θ, xt, xt−1, εt)]

A solution θ∗, e.g. [aRE, M], is "E-stable" if h(θ) is stable at θ∗
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E-stability

• h(θ) is stable if real part of the eigenvalues is negative:

• Here:
h(θ) =

[
(ρ− 1) a+ δ

M− S

]
=⇒ convergence of differentiable system if ρ− 1 < 0

• =⇒ convergence even if ρ < −1!
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Implications of E-stability?

• Recursive least-squares: stochastics in T (·) mapping
• =⇒ what will happen is less certain, even with E-stability
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General implications of E-stability?

• If a solution is not E-stable:
• =⇒ non-convergence is a probability 1 event

• If a solution is E-stable:
• the presence of stochastics make the theorems non-trivial
• in general only info about mean dynamics
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Mean dynamics

See Evans and Honkapohja textbook for formal results.

• Theorems are a bit tricky, but are of the following kind:
If a solution f ∗ is E-stable, then the time path under learning
will either leave the neighborhood in finite time or will converge
towards f ∗. Moreover, the longer it does not leave this
neighborhood, the smaller the probability that it will

• So there are two parts
• mean dynamics: convergence towards fixed point
• escape dynamics: (large) shocks may push you away from fixed
point
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Importance of Gain

γ̂T = γ̂T−1 +ω(T)R−1
T xT

(
yT − x′Tγ̂T−1

)

• Gain in least squares updating formula, ω (T), plays a key role
in theorems

• ω (T) −→ 0 too fast: you may end up in somthing that is not
an equilibrium

• ω (T) −→ 0 too slowly:,you may not converge towards it
• So depending on the application, you may need conditions like

∞

∑
t=1

ω(t)2 < ∞ and
∞

∑
t=1

ω(t) = ∞
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Special cases

• In simple cases, stronger results can be obtained

• Evans (1989) shows that the system of equations (2) and (3)
with standard recursive least squares (gain of 1/t) converges to
rational expectations solution if ρ < 1 (so also if ρ < −1).
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Bayesian learning

• LS learning has some disadvantages:
• why "least-squares" and not something else?
• how to choose gain?
• why don’t agents incorporate that beliefs change?

• Beliefs are updated each period
=⇒ Bayesian learning is an obvious thing to consider
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Bayesian versus LS learning

• LS learning 6= Bayesian learning with uninformed prior
at least not always

• Bullard and Suda (2009) provide following nice example
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Bayesian versus LS learning

Model:

pt = ρLpt−1 + ρ0Êt−1 [pt] + ρ1Êt−1 [pt+1] + εt (4)

• Key difference with earlier model:
• two extra terms

60 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

Bayesian versus LS learning

The RE solution:

•
pt = bpt−1 + εt

where b is a solution to

b = ρL + ρ0b+ ρ1b2
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Bayesian learning - setup

• PLM:
pt = b̂t−1pt−1 + εt

and εt has a known distribution

• plug PLM into (4) =⇒ ALM

• but a Bayesian learner is a bit more careful
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Bayesian learner understands he is learning

Êt−1 [pt+1] = Êt−1

[
ρLpt + ρ0Êt [pt+1] + ρ1Êt [pt+2]

]
= ρLpt + Êt−1

[
ρ0Êt [pt+1] + ρ1Êt [pt+2]

]
= ρLpt + Êt−1

[
ρ0b̂tpt + ρ1b̂tpt+1

]

• and he realizes, for example, that b̂t and pt are both affected by
εt!
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Bayesian learner understands he is learning

• Bayesian learner realizes that

Êt−1

[
b̂tpt+1

]
6= Êt−1

[
b̂t

]
Êt−1 [pt+1]

and calculates Êt−1

[
b̂tpt+1

]
explicitly

• LS learner forms expectations thinking that

Êt−1

[
b̂tpt+1

]
= Êt−1

[
b̂t−1pt+1

]
= b̂t−1Êt−1

[(
ρLp+ ρ0b̂t−1 + ρ1b̂t−1

)
pt

]

64 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

Bayesian versus LS learning

• Bayesian learner cares about a covariance term

• Bullard and Suda (2009) show that Bayesian is simillar to LS
learning in terms of E-stability

• Such covariance terms more important in nonlinear frameworks

• Unfortunately not much done with nonlinear models
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Learning what?

Model:

Pt = βEt [Pt+1 +Dt+1]

• Learning can be incorporated in many ways.
• Obvious choices here:

1 learn about dgp Dt and use true mapping for Pt = P (Dt)
2 know dgp Dt and learn about Pt = P (Dt)
3 learn about both
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Learning what?

1 Adam, Marcet, Nicolini (2009): one can solve several asset
pricing puzzles using a simple model if learning is learning
about Et [Pt+1] (instead of learning about dgp Dt)

2 Adam and Marcet (2011): provide micro foundations that this
is a sensible choice
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Simple model

Model:

Pt = βEt [Pt+1 +Dt+1]

Dt+1

Dt
= aεt+1

with

Et [εt+1] = 1
εt i.i.d.
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Model properties REE

• Solution:
Pt =

βa
1− βa

Dt

• Pt/Dt is constant
• Pt/Pt−1 is i.i.d.
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Adam, Marcet, & Nicolini 2009

PLM:

Êt

[
Pt+1

Pt

]
= γt

ALM:

Pt

Pt−1
=

1− βγt−1
1− βγt

aεt =

(
a+

aβ∆γt
1− βγt

)
εt

γt+1 =

(
a+

aβ∆γt
1− βγt

)

70 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

Model properties with learning

• Solution is quite nonlinear
• especially if γt is close to β−1

• Serial correlation.
• in fact there is momentum. For example:

γt = a & ∆γt > 0 =⇒ ∆γt+1 > 0
γt = a & ∆γt < 0 =⇒ ∆γt+1 < 0

• Pt/Dt is time varying
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Adam, Marcet, & Nicolini 2011

Agent i does following optimization problem

max Êi,t [·]

• Êi,t is based on a sensible probability measure

• Êi,t is not necessarily the true conditional expectation
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Adam, Marcet, & Nicolini 2011
• Setup leads to standard first-order conditions but with Êi,t
instead of Et

• For example

Pt = βÊi,t [Pt+1 +Dt+1]

if agent i is not constrained

• Key idea:
• price determination is diffi cult
• agents do not know this mapping
• =⇒ they forecast Êi,t [Pt+1] directly
• =⇒ law of iterated expectations cannot be used because next
period agent i may be constrained in which case the equality
does not hold
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Topics - Overview

1 E-stability and sunspots

2 Learning and nonlinearities
Parameterized expectations

3 Two representations of sunspots
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E-stability and sunspots
Model:

xt = ρEt [xt+1]

xt cannot explode

no initial condition

Solution:

|ρ| < 1 : xt = 0 ∀t
|ρ| ≥ 1 : xt = ρ−1xt−1 + et ∀t

where et is the sunspot (which has Et [et] = 0
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Adaptive learning

PLM:

xt = âtxt−1 + et

ALM:

xt = âtρxt−1

=⇒ ât+1 = âtρ

• thus divergence when |ρ| > 1 (sunspot solutions)
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Adaptive learning

PLM:

xt = âtxt−1 + et

ALM:

xt = âtρxt−1

=⇒ ât+1 = âtρ

• thus divergence when |ρ| > 1 (sunspot solutions)
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Stability puzzle

• There are few counter examples and not too clear why sunspots
are not learnable in RBC-type models

• sunspot solutions are learnable in some New Keynesian models
(Evans and McGough 2005)

• McGough, Meng, and Xue 2011 provide a counterexample and
show that an RBC model with negative externalities has
learnable sunspot solutions
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PEA and learning

• Learning is usually done in linear frameworks

• PEA parameterized the conditional expectations in nonlinear
frameworks

• =⇒ PEA is a natural setting to do

• adaptive learning as well as
• recursive learning

79 / 95



Intro Simple No Feedback Recursive LS With Feedback Topics

Model

Pt = E

[
β

(
Dt+1

Dt

)−ν

(Pt+1 +Dt+1)

]
= G (Xt)

Xt : state variables
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Conventional PEA in a nutshell

• Start with a guess for G (Xt), say g(xt; η0)

• g (·) may have wrong functional form
• xt may only be a subset of Xt
• η0 are the coeffi cients of g (·)
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Conventional PEA in a nutshell

• Iterate to find fixed point for ηi

1 use ηi to generate time path {Pt}T
t=1

2 let
η̂i = arg min

η
∑

t
(yt+1 − g (xt; η))2

where

yt+1 = β

(
Dt+1

Dt

)−ν

(Pt+1 +Dt+1)

3 Dampen if necessary

ηi+1 = ωη̂i + (1−ω) ηi
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Interpretation of conventional PEA

• Agents have beliefs

• Agents get to observe long sample generated with these beliefs

• Agents update beliefs

• Corresponds to adaptive expectations
• no stochastics if T is large enough
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Recursive PEA

• Agents form expectations using g (xt; ηt)

• Solve for Pt using
Pt = g (xt; ηt)

• Update beliefs using this one additional observation

• Go to the next period using ηt+1
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Recursive methods and convergence

Look at recursive formulation of LS:

γ̂t = γ̂t−1 +
1
t

R−1
t xt

(
yt − x′tγ̂t−1

)
• !!! ∆γ̂t gets smaller as t gets bigger
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General form versus common factor
represenation

sunspot literature distinquishes between:

1 General form representation of a sunspot

2 Common factor representation of a sunspot
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First consider non-sun-spot indeterminacy

Model:

kt+1 + a1kt + a2kt−1 = 0 or

(1− λ1L) (1− λ2L) kt+1 = 0

Also:

• k0 given
• kt has to remain finite
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Multiplicity

Solution:

kt = b1λt
1 + b2λt

2

k0 = b1 + b2

Thus many possible choices for b1 and b2 if |λ1| < 1 and |λ1| < 2
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Multiplicity
• What if we impose recursivity?

kt = d̄kt−1

• Does that get rid of multiplicity? No, but it does reduce the
number of solutions from ∞ to 2

(
d̄2 + a1d̄+ a2

)
kt−1 = 0 ∀t

=⇒(
d̄2 + a1d̄+ a2

)
= 0

the 2 solutions correspond to setting either λ1 or λ2 equal to 0
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Back to sunspots

Doing the same trick with sunspots gives a solution with following
two properties:

1 it has a serially correlated sunspot component
with the same factor as the endogenous variable (i.e. the
common factor)

2 there are two of these
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General form representation

Model:

Et [kt+1 + a1kt + a2kt−1] = 0 or

Et [(1− λ1L) (1− λ2L) kt+1] = 0

General form representation:

kt = b1λt
1 + b2λt

2 + et

k0 = b1 + b2 + e0

where et is serially uncorrelated
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Common factor representation
Model:

Et [kt+1 + a1kt + a2kt−1] = 0 or

Et [(1− λ1L) (1− λ2L) kt+1] = 0

Common factor representation:

kt = b1λt
i + ζt

ζt = λiζt−1 + et

k0 = bi + ζ0

λi ∈ {λ1, λ2}

where et is serially uncorrelated
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