Introduction to Bayesian Estimation

Wouter J. Den Haan
London School of Economics

© 2011 by Wouter J. Den Haan

May 31, 2015

Overview

- Maximum Likelihood
- A very useful tool: Kalman filter
- Estimating DSGEs
- Maximum Likelihood \& DSGEs
- formulating the likelihood
- Singularity when \#shocks \leq number of observables
- Bayesian estimation
- Tools:
- Metropolis Hastings

Standard Maximum Likelihood problem

Theory:

$$
\begin{aligned}
y_{t} & =a_{0}+a_{1} x_{t}+\varepsilon_{t} \\
\varepsilon_{t} & \sim N\left(0, \sigma^{2}\right) \\
x_{t} & : \text { exogenous }
\end{aligned}
$$

Data: $\left\{y_{t}, x_{t}\right\}_{t=1}^{T}$

ML estimator

$$
\max _{a_{0}, a_{1}, \sigma} \prod_{t=1}^{T} p\left(\varepsilon_{t}\right)
$$

$$
\begin{gathered}
\varepsilon_{t}=y_{t}-a_{0}-a_{1} x_{t} \\
p\left(\varepsilon_{t}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\varepsilon_{t}^{2}}{2 \sigma^{2}}\right)
\end{gathered}
$$

ML estimator

$$
\max _{a_{0}, a_{1}, \sigma} \prod_{t=1}^{T} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\left(y_{t}-a_{0}-a_{1} x_{t}\right)^{2}}{2 \sigma^{2}}\right)
$$

Rudolph E. Kalman

born in Budapest, Hungary, on May 19, 1930

Kalman filter

- Linear projection
- Linear projection with orthogonal regressors
- Kalman filter

The slides for the Kalman filter is based on Ljungqvist and Sargent's textbook

Linear projection

- $y: n_{y} \times 1$ vector of random variables
- x : $n_{x} \times 1$ vector of random variables
- First and second moments exist

$$
\begin{array}{lll}
\mathrm{E} y=\mu_{y} & \tilde{y}=y-\mu_{y} & \mathrm{E} \tilde{x} \tilde{x}^{\prime}=\Sigma_{x x} \\
\mathrm{E} x=\mu_{x} & \tilde{x}=x-\mu_{x} & \mathrm{E} \tilde{y} \tilde{y}^{\prime}=\Sigma_{y y} \\
& \mathrm{E} \tilde{y} \tilde{x}^{\prime}=\Sigma_{y x}
\end{array}
$$

Definition of linear projection

The linear projection of y on x is the function

$$
\widehat{\mathrm{E}}[y \mid x]=a+B x,
$$

a and B are chosen to minimize

$$
\mathrm{E} \text { trace }\left\{(y-a+B x)(y-a+B x)^{\prime}\right\}
$$

Formula for linear projection

The linear projection of y on x is given by

$$
\widehat{\mathrm{E}}[y \mid x]=\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-\mu_{x}\right)
$$

Difference with linear regression problem

- True model:

$$
\begin{aligned}
y & =\bar{B} x+\bar{D} z+\varepsilon \\
\mathrm{E} x & =\mathrm{E} z=\mathrm{E} \varepsilon=0, \mathrm{E}[\varepsilon \mid x, z]=0, \mathrm{E}[z \mid x] \neq 0
\end{aligned}
$$

\bar{B} : measures the effect of x on y keeping all else-also z and ε-constant.

- Particular regression model:

$$
y=\bar{B} x+u
$$

Difference with linear regression problem

Comments:

- Least-squares estimate $\neq \bar{B}$
- Projection:

$$
\widehat{\mathrm{E}}[y \mid x]=B x=\bar{B} x+\bar{D} \widehat{\mathrm{E}}[z \mid x]
$$

- Projection well defined linear projection can include more than the direct effect:

Message:

- You can always define the linear projection
- you don't have to worry about the properties of the error term.

Linear Projection with orthogonal regressors

- $x=\left[x_{1}, x_{2}\right]$ and suppose that $\Sigma_{x_{1} x_{2}}=0$
- x_{1} and x_{2} could be vectors

$$
\begin{aligned}
\hat{\mathrm{E}}[y \mid x] & =\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-\mu_{x}\right) \\
& =\mu_{y}+\left[\Sigma_{y x_{1}} \Sigma_{y x_{2}}\right]\left[\begin{array}{cc}
\Sigma_{x_{1} x_{1}}^{-1} & 0 \\
0 & \Sigma_{x_{2} x_{2}}^{-1}
\end{array}\right]\left(x-\mu_{x}\right) \\
& =\mu_{y}+\Sigma_{y_{x_{1}}} \Sigma_{x_{1} x_{1}}^{-1}\left(x_{1}-\mu_{x_{1}}\right)+\Sigma_{y_{x_{2}}} \Sigma_{x_{2} x_{2}}^{-1}\left(x_{2}-\mu_{x_{2}}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\widehat{\mathrm{E}}[y \mid x]=\widehat{\mathrm{E}}\left[y \mid x_{1}\right]+\widehat{\mathrm{E}}\left[y \mid x_{2}\right]-\mu_{y} \tag{1}
\end{equation*}
$$

Time Series Model

$$
\begin{gathered}
x_{t+1}=A x_{t}+G w_{1, t+1} \\
y_{t}=C x_{t}+w_{2, t} \\
E w_{1, t}=E w_{2, t}=0 \\
\mathbf{E}\left[\begin{array}{c}
w_{1, t+1} \\
w_{2, t}
\end{array}\right]\left[\begin{array}{c}
w_{1, t+1} \\
w_{2, t}
\end{array}\right]^{\prime}=\left[\begin{array}{ll}
V_{1} & V_{3} \\
V_{3}^{\prime} & V_{2}
\end{array}\right]
\end{gathered}
$$

Time Series Model

- y_{t} is observed, but x_{t} is not
- the coefficients are known (could even be time-varying)
- Initial condition:
- x_{1} is a random variable (mean $\mu_{x_{1}}$ \& covariance matrix Σ_{1}) (it is not unusual that x_{t} is simply set equal to $\mu_{x_{1}}$.
- $w_{1, t+1}$ and $w_{2, t}$ are serially uncorrelated and orthogonal to x_{1}

Objective

The objective is to calculate

$$
\begin{aligned}
\widehat{\mathrm{E}}_{t} x_{t+1} & \equiv \widehat{\mathrm{E}}\left[x_{t+1} \mid y_{t}, y_{t-1}, \cdots, y_{1}, \tilde{x}_{1}\right] \\
& =\widehat{\mathrm{E}}\left[x_{t+1} \mid Y^{t}, \tilde{x}_{1}\right]
\end{aligned}
$$

where \tilde{x}_{1} is an initial estimate of x_{1}

Trick: get a recursive formulation

Orthogonalization of the information set

- Let
- $\hat{y}_{t}=y_{t}-\hat{\mathrm{E}}\left[y_{t} \mid \hat{y}_{t-1}, \hat{y}_{t-2}, \cdots, \hat{y}_{1}, \tilde{x}_{1}\right]$
- $\hat{Y}^{t}=\left\{\hat{y}_{t}, \hat{y}_{t-1}, \cdots, \hat{y}_{1}\right\}$
- space spanned by $\left\{\tilde{x}_{1}, \hat{Y}^{t}\right\}=$ space spanned by $\left\{\tilde{x}_{1}, Y_{t}\right\}$
- That is, anything that can be expressed as a linear combination with elements in $\left\{\tilde{x}_{1}, \hat{Y}^{t}\right\}$ can be expressed as a linear combination of elements in $\left\{\tilde{x}_{1}, Y_{t}\right\}$.

Orthogonalization of the information set

- Then

$$
\begin{equation*}
\widehat{\mathrm{E}}\left[y_{t+1} \mid Y^{t}, \tilde{x}_{1}\right]=\widehat{\mathrm{E}}\left[y_{t+1} \mid \hat{Y}^{t}, \tilde{x}_{1}\right]=\mathrm{C} \widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{Y}^{t}, \tilde{x}_{1}\right] \tag{2}
\end{equation*}
$$

Derivation of the Kalman filter

From (1) we get

$$
\begin{equation*}
\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{Y}^{t}, \tilde{x}_{1}\right]=\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{y}_{t}\right]+\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{Y}^{t-1}, \tilde{x}_{1}\right]-\mathrm{E} x_{t+1} \tag{3}
\end{equation*}
$$

The first term in (3) is a standard linear projection:

$$
\begin{aligned}
\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{y}_{t}\right] & =\mathrm{E} x_{t+1}+\operatorname{cov}\left(x_{t+1}, \hat{y}_{t}\right)\left[\operatorname{cov}\left(\hat{y}_{t}, \hat{y}_{t}\right)\right]^{-1}\left(\hat{y}_{t}-\mathrm{E} \hat{y}_{t}\right) \\
& =\mathrm{E} x_{t+1}+\operatorname{cov}\left(x_{t+1}, \hat{y}_{t}\right)\left[\operatorname{cov}\left(\hat{y}_{t}, \hat{y}_{t}\right)\right]^{-1} \hat{y}_{t}
\end{aligned}
$$

Some algebra

- Similar to the definition of \hat{y}_{t}, let

$$
\begin{aligned}
\hat{x}_{t+1} & =x_{t+1}-\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{y}_{t}, \hat{y}_{t-1}, \cdots, \hat{y}_{1}, \tilde{x}_{1}\right] \\
& =x_{t+1}-\widehat{\mathrm{E}}_{t} x_{t+1}
\end{aligned}
$$

- Let $\Sigma_{\hat{x}_{t}}=E \hat{x}_{t} \hat{x}_{t}^{\prime}$

$$
\begin{aligned}
\operatorname{cov}\left(x_{t+1}, \hat{y}_{t}\right) & =A \Sigma_{\hat{x}_{t}} C^{\prime}+G V_{3} \\
\operatorname{cov}\left(\hat{y}_{t}, \hat{y}_{t}\right) & =C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2}
\end{aligned}
$$

- To go from unconditional covariance, $\operatorname{cov}(\cdot)$, to conditional $\Sigma_{\hat{x}_{t}}$ requires some algebra (see appendix of Ljungqvist-Sargent for details)

Using the derived expressions

$$
\begin{gather*}
\hat{\mathrm{E}}\left[x_{t+1} \mid \hat{y}_{t}\right] \\
=\mathrm{E} x_{t+1}+\operatorname{cov}\left(x_{t+1}, \hat{y}_{t}\right)\left[\operatorname{cov}\left(\hat{y}_{t}, \hat{y}_{t}\right)\right]^{-1} \hat{y}_{t} \\
=\mathrm{E} x_{t+1}+\left(A \Sigma_{\hat{x}_{t}} C^{\prime}+G V_{3}\right)\left(C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2}\right)^{-1} \hat{y}_{t} \tag{4}
\end{gather*}
$$

Derivation Kalman filter

- Now get an expression for the second term in (3).
- From $x_{t+1}=A x_{t}+G w_{1, t+1}$, we get

$$
\begin{equation*}
\widehat{\mathrm{E}}\left[x_{t+1} \mid \hat{Y}^{t-1}, \tilde{x}_{1}\right]=A \widehat{\mathrm{E}}\left[x_{t} \mid \hat{Y}^{t-1}, \tilde{x}_{1}\right]=A \widehat{\mathrm{E}}_{t-1} x_{t} \tag{5}
\end{equation*}
$$

Using (4) and (5) in (3) gives the recursive expression

$$
\widehat{\mathrm{E}}_{t} x_{t+1}=A \widehat{\mathrm{E}}_{t-1} x_{t}+K_{t} \hat{y}_{t}
$$

where

$$
K_{t}=\left(A \Sigma_{\hat{x}_{t}} C^{\prime}+G V_{3}\right)\left(C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2}\right)^{-1}
$$

Prediction for observable

From

$$
y_{t+1}=C x_{t+1}+w_{2, t+1}
$$

we get

$$
\widehat{\mathrm{E}}\left[y_{t+1} \mid Y_{t}, \tilde{x}_{1}\right]=C \widehat{\mathrm{E}}_{t} x_{t+1}
$$

Thus

$$
\hat{y}_{t+1}=y_{t+1}-C \widehat{\mathrm{E}}_{t} x_{t+1}
$$

Updating the covariance matrix

- We still need an equation to update $\Sigma_{\hat{x}_{t}}$. This is actually not that hard. The result is

$$
\Sigma_{\hat{x}_{t+1}}=A \Sigma_{\hat{x}_{t}} A^{\prime}+G V_{1} G^{\prime}-K_{t}\left(A \Sigma_{\hat{x}_{t}} C^{\prime}+G V_{3}\right)^{\prime}
$$

- Expression is deterministic and does not depend particular realizations. That is, precision only depends on the coefficients of the time series model

Applications Kalman filter

- signal extraction problems
- GPS, computer vision applications, missiles
- prediction
- simple alternative to calculating inverse policy functions
- (see below)

Estimating DSGE models

- Forget the Kalman filter for now, we will not use it for a while
- What is next?
- Specify the neoclassical model that will be used as an example
- Specify the linearized version
- Specify the estimation problem
- Maximum Likelihood estimation
- Explain why Kalman filter is useful
- Bayesian estimation
- MCMC, a necessary tool to do Bayesian estimation

Neoclassical growth model

First-order conditions

$$
\begin{aligned}
c_{t}^{-v}= & \mathrm{E}_{t}\left[\beta c_{t+1}^{-v}\left(\alpha z_{t+1} k_{t}^{\alpha-1}+1-\delta\right)\right] \\
c_{t}+k_{t}= & z_{t} k_{t-1}^{\alpha}+(1-\delta) k_{t-1} \\
z_{t}= & (1-\rho)+\rho z_{t-1}+\varepsilon_{t} \\
& \varepsilon_{t} \sim N\left(0, \sigma^{2}\right) \\
\Psi= & \{\beta, v, \alpha, \delta, \rho, \sigma\}
\end{aligned}
$$

Policy functions

- FOCs are not like

$$
y_{t}=a_{0}+a_{1} x_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \sim N\left(0, \sigma^{2}\right)
$$

- But the policy functions are.similar

$$
\begin{aligned}
k_{t} & =g\left(k_{t-1}, z_{t} ; \Psi\right) \\
c_{t} & =h\left(k_{t-1}, z_{t} ; \Psi\right) \\
z_{t} & =(1-\rho)+\rho z_{t-1}+\varepsilon_{t}
\end{aligned}
$$

Policy functions

Problems:

- functional form of policy functions not known
- they are nonlinear

Solution to both problems:

- use linearized approximations around steady state and treat these as the truth

Steady state

steady state \equiv solution when

- no uncertainty, i.e., $\sigma=0$
- no transition left

Steady state

- no uncertainty \Longrightarrow no $\mathrm{E}_{t}[\cdot]$ in equations
- no transition $\Longrightarrow z_{t}=z_{t-1}$ and $c_{t}=c_{t+1}$

$$
\begin{gathered}
\bar{z}=(1-\rho)+\rho \bar{z} \Longrightarrow \bar{z}=1 \\
\bar{c}^{-v}=\beta \bar{c}^{-v}\left(\alpha \bar{k}^{\alpha-1}+1-\delta\right) \Longrightarrow \bar{k}=\left(\frac{\beta \alpha}{1-\beta(1-\delta)}\right)^{1 /(1-\alpha)} \\
\text { budget constraint } \Longrightarrow \bar{c}=\bar{k}^{\alpha}-\delta \bar{k}
\end{gathered}
$$

Back to FOCs

FOC can be written as

$$
\begin{gathered}
\left(z_{t} k_{t-1}^{\alpha}+(1-\delta) k_{t-1}-k_{t}\right)^{-v} \\
=\mathrm{E}_{t}\left[\beta\left(z_{t+1} k_{t}^{\alpha}+(1-\delta) k_{t}-k_{t+1}\right)^{-v}\left(\alpha z_{t+1} k_{t}^{\alpha-1}+1-\delta\right)\right]
\end{gathered}
$$

or

$$
\mathrm{E}_{t}\left[F\left(\hat{k}_{t-1}, \hat{k}_{t}, \hat{k}_{t+1}, \hat{z}_{t}, \hat{z}_{t+1} ; \Psi\right)\right]=0
$$

where

$$
\hat{k}_{t}=k_{t}-\bar{k}, \hat{z}_{t}=z_{t}-\bar{z}
$$

linearized policy functions

- Getting linearized policy functions correct in general is doable but not trivial
- I just give rough idea for this simple example

linearized policy functions

$$
\begin{gathered}
E_{t}\left[F\left(\hat{k}_{t-1}, \hat{k}_{t}, \hat{k}_{t+1}, \hat{z}_{t}, \hat{z}_{t+1} ; \Psi\right)\right]=0 \\
\Longrightarrow \mathrm{E}_{t}\left[\hat{k}_{t+1}+\phi_{1} \hat{k}_{t}+\phi_{2} \hat{k}_{t-1}+\tilde{\phi}_{3} \hat{z}_{t}+\tilde{\phi}_{4} \hat{z}_{t+1}\right]=0 \\
\Longrightarrow \mathrm{E}_{t}\left[\hat{k}_{t+1}\right]+\phi_{1} \hat{k}_{t}+\phi_{2} \hat{k}_{t-1}+\phi_{3} \hat{z}_{t}=0, \text { where } \phi_{3}=\tilde{\phi}_{3}+\rho \tilde{\phi}_{4}
\end{gathered}
$$

The ϕ coefficients are known functions of Ψ

linearized policy functions

- Conjecture that solution is as follows:

$$
\hat{k}_{t}=a_{k, k} \hat{k}_{t-1}+a_{k, z} \hat{z}_{t}
$$

- now we just have to solve for $a_{k, k}$ and $a_{k, z}$

linearized policy functions

- Plug conjecture into linearlized Euler equation gives
$0=$

$$
0=
$$

$$
\mathrm{E}_{t}\left[a_{k, k} \hat{k}_{t}+a_{k, z} \hat{z}_{t+1}\right] \quad a_{k, k}\left(a_{k, k} \hat{k}_{t-1}+a_{k, z} \hat{z}_{t}\right)+a_{k, z} \hat{z}_{t}
$$

$+\phi_{1}\left(a_{k, k} \hat{k}_{t-1}+a_{k, z} \hat{z}_{t}\right)$
$+\phi_{1}\left(a_{k, k} \hat{k}_{t-1}+a_{k, z} \hat{z}_{t}\right)$
$+\phi_{2} \hat{k}_{t-1}+\phi_{3} \hat{z}_{t}$
$+\phi_{2} \hat{k}_{t-1}+\phi_{3} \hat{z}_{t}$

linearized policy functions

- This has to hold for all \hat{k}_{t-1} and $\hat{z}_{t} \Longrightarrow$

$$
\begin{aligned}
a_{k, k}^{2}+\phi_{1} a_{k, k}+\phi_{2} & =0 \text { and } \\
a_{k, k} a_{k, z}+\rho a_{k, z}+\phi_{1} a_{k, z}+\phi_{3} & =0
\end{aligned}
$$

- Concavity implies that only one solution for $a_{k, k}$ is less than 1

Linearized solution

$$
\begin{aligned}
k_{t}= & \bar{k}+a_{k, k}\left(k_{t-1}-\bar{k}\right)+a_{k, z}\left(z_{t}-\bar{z}\right) \\
z_{t}= & (1-\rho)+\rho z_{t-1}+\varepsilon_{t} \\
& \varepsilon_{t} \sim N\left(0, \sigma^{2}\right) \\
& z_{0} \sim N\left(1, \sigma^{2} /\left(1-\rho^{2}\right)\right. \\
& k_{0} \text { is given }
\end{aligned}
$$

- $a_{k, k}, a_{k, z}$, and \bar{k} are known functions of the structural parameters \Longrightarrow better notation would be $a_{k, k}(\Psi), a_{k, z}(\Psi)$, and $\bar{k}(\Psi)$
- Consumption has been substituted out
- Approximation error is ignored; linearized model is treated as the true model with Ψ as the parameters

Linearized solution \& approximation error

- Approximation error is ignored
- This is fine for simple models with only aggregate risk
- But never forget these are approximations
- in particular; $a_{k, k}(\Psi)$ and $a_{k, z}(\Psi)$ do not depend on σ; this is called certainty equivalence

Estimation problem

Given data for capital, $\left\{k_{t}\right\}_{0}^{T}$, estimate the set of coefficients, Ψ

$$
\Psi=\left[\alpha, \beta, v, \delta, \rho, \sigma, z_{0}\right]
$$

- No data on productivity, z_{t}.
- If you had data on $z_{t} \Longrightarrow$ Likelihood $=0$ for sure
- More on this below.

Formulation of the Likelihood

- Let Y^{T} be the complete sample

$$
L\left(Y^{T} \mid \Psi\right)=p\left(z_{0}\right) \prod_{t=1}^{T} p\left(z_{t} \mid z_{t-1}\right)
$$

$p\left(z_{t} \mid z_{t-1}\right)$ corresponds with probability of a particular value for ε_{t}

Formulation of the Likelihood

Basic idea:

- Given a value for Ψ and give the data set, Y^{T}, you can calculate the implied values for ε_{t}
- We know the distribution of $\varepsilon_{t} \Longrightarrow$
- We can calculate the probability (likelihood) of $\left\{\varepsilon_{1}, \cdots, \varepsilon_{T}\right\}$

Formulation of the Likelihood

$$
\begin{aligned}
& k_{t}=\bar{k}+a_{k, k}\left(k_{t-1}-\bar{k}\right)+a_{k, z}\left(z_{t}-\bar{z}\right) \\
& \Longrightarrow \\
& z_{t}= \frac{a_{k, z} \bar{z}-\bar{k}+a_{k, k} \bar{k}}{a_{k, z}}-\frac{a_{k, k}}{a_{k, z}} k_{t-1}+\frac{1}{a_{k, z}} k_{t} \\
& z_{t}=b_{0}+b_{1} k_{t-1}+b_{2} k_{t} \\
& \varepsilon_{t}=z_{t}-(1-\rho)-\rho z_{t-1}
\end{aligned}
$$

Formulation of the Likelihood

- ε_{t} is obtained by inverting the policy function
- For larger systems, this inversion is not as easy to implement.
- Below, we show an alternative

Formulation of the Likelihood

A bit more explicit

- Take a value for Ψ
- Given k_{0} and k_{1} you can calculate z_{1}
- Given z_{0} you can calculate ε_{1}
- Continuing, you can calculate $\varepsilon_{t} \forall t$
- To make explicit the dependence of ε_{t} on Ψ, write $\varepsilon_{t}(\Psi)$
- The Likelihood can thus be written as

$$
\prod_{t=1}^{T} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{\frac{-\left(\varepsilon_{t}(\Psi)\right)^{2}}{2 \sigma^{2}}\right\}
$$

Too few unobservables \& singularities

- Above we assumed that there was no data on z_{t}
- Suppose you had data on z_{t}
- There are two cases to consider
- Data not exactly generated by this model (most likely case) \Longrightarrow Likelihood $=0$ for any value of Ψ
- Data is exactly generated by this model \Longrightarrow Likelihood $=1$ for true value of Ψ and
\Longrightarrow Likelihood $=0$ for any other value for Ψ

Too few unobservables \& singularities

$$
k_{t}=\bar{k}+a_{k, k}\left(k_{t-1}-\bar{k}\right)+a_{k, z}\left(z_{t}-\bar{z}\right)
$$

Using the values for 4 periods, you can pin down $\bar{k}, \bar{z}, a_{k, k}$, and $a_{k, z}$.

- What about values for additional periods?
- Data generated by model (unlikely of course) \Longrightarrow additional observations will fit this equation too
- Data not generated by model \Longrightarrow additional observations will not fit this equation \Longrightarrow Likelihood $=$ zero

Too few unobservables \& singularities

- Can't I simply add an error term?

$$
k_{t}=\bar{k}+a_{k, k}\left(k_{t-1}-\bar{k}\right)+a_{k, z}\left(z_{t}-\bar{z}\right)+u_{t}
$$

- Answer: NO not in general
- Why not? It is ok in standard regression

Too few unobservables \& singularities

Why is the answer NO in general?
(1) u_{t} represents other shocks such as preference shocks \Longrightarrow it's presence is likely to affect $\bar{k}, a_{k, k}$, and $a_{k, z}$
(2) u_{t} represents measurement error
\Longrightarrow you are fine from an econometric stand point \Longrightarrow but is residual only measurement error?

What if you also observe consumption?

Suppose you observe k_{t}, c_{t}, but not z_{t} ?

$$
\begin{aligned}
& k_{t}=\bar{k}+a_{k, k}\left(k_{t-1}-\bar{k}\right)+a_{k, z}\left(z_{t}-\bar{z}\right) \\
& c_{t}=\bar{c}+a_{c, k}\left(k_{t-1}-\bar{k}\right)+a_{c, z}\left(z_{t}-\bar{z}\right)
\end{aligned}
$$

- Recall that the coefficients are functions of Ψ
- Given value of Ψ you can solve for z_{t} from top equation
- Given value of Ψ you can solve for z_{t} from bottom equation
- With real world data you will get inconsistent answers.

Unobservables and avoiding singularities

General rule:

- For every observable you need at least one unobservable shock
- Letting them be measurement errors is hard to defend
- The last statement does not mean that you cannot also add measurement errors

Using the Kalman filter

$$
\begin{gather*}
x_{t+1}=A x_{t}+G w_{1, t+1} \tag{6}\\
y_{t}=C x_{t}+w_{2, t} \tag{7}
\end{gather*}
$$

- (6) describes the equations of the model;
- x_{t} consists of the "true" values of state variables like capital and productivity.
- (7) relates the observables, y_{t}, to the "true" values

Example

- consumption and capital are observed with error
- $c_{t}^{*}=c_{t}+u_{c, t}$
- $k_{t}^{*}=k_{t}+u_{k, t}$
- z_{t} is unobservable
- $x_{t}^{\prime}=\left[k_{t-1}-\bar{k}, z_{t-1}-\bar{z}\right]$
- $w_{1, t+1}=\varepsilon_{t}$
- $y_{t}^{\prime}=\left[k_{t-1}^{*}-\bar{k}, c_{t}^{*}-\bar{c}\right]$

Example

- (6) gives policy function for k_{t} and law of motion for z_{t}

$$
\left[\begin{array}{c}
k_{t}-\bar{k} \\
z_{t+1}-\bar{z}
\end{array}\right]=\left[\begin{array}{cc}
a_{k, k} & a_{k, z} \\
0 & \rho
\end{array}\right]\left[\begin{array}{c}
k_{t-1}-\bar{k} \\
z_{t}-\bar{z}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\varepsilon_{t+1}
\end{array}\right]
$$

- Equation (7) is equal to

$$
\left[\begin{array}{c}
k_{t-1}^{*}-\bar{k} \\
c_{t}-\bar{c} \\
c_{t}^{*}-\bar{c}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
a_{c, k} & a_{c, z} \\
a_{c, k} & a_{c, z}
\end{array}\right]\left[\begin{array}{c}
k_{t-1}-\bar{k} \\
z_{t}-\bar{z}
\end{array}\right]+\left[\begin{array}{c}
u_{k, t} \\
0 \\
u_{c, t}
\end{array}\right]
$$

Back to the Likelihood

- y_{t} consists of k_{t}^{*} and c_{t}^{*} and the model is given by (6) and (7).
- From the Kalman filter we get \hat{y}_{t} and $\Sigma_{\hat{y}_{t}}$

$$
\begin{aligned}
\widehat{\mathrm{E}}\left[x_{t} \mid Y^{t-1}, \tilde{x}_{1}\right] & =A \widehat{\mathrm{E}}\left[x_{t-1} \mid Y^{t-2}, \tilde{x}_{1}\right]+K_{t-1} \hat{y}_{t-1} \\
\widehat{\mathrm{E}}\left[y_{t} \mid Y^{t-1}, \tilde{x}_{1}\right] & =C \widehat{\mathrm{E}}\left[x_{t} \mid Y^{t-1}, \tilde{x}_{1}\right] \\
\hat{y}_{t} & =y_{t}-\widehat{\mathrm{E}}\left[y_{t} \mid Y^{t-1}, \tilde{x}_{1}\right] \\
\Sigma_{\hat{x}_{t_{t+1}}} & =A \Sigma_{{\hat{\hat{x}_{1}}} A^{\prime}+G V_{1} G^{\prime}-K_{t}\left(A \Sigma_{\hat{x}_{t}} C+G V_{3}\right)^{\prime}}^{\Sigma_{\hat{y}_{t}}}
\end{aligned}=C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2} \quad l
$$

Back to the Likelihood

- \hat{y}_{t+1} is normally distributed because
- this is a linear model and underlying shocks are linear
- Kalman filter generates \hat{y}_{t+1} and $\Sigma_{\hat{y}_{t}}$
- (given Ψ and observables, Y^{T})
- Given normality calculate likelihood of $\left\{\hat{y}_{t+1}\right\}$

Kalman Filter versus inversion

with measurement error

- have to use Kalman filter
withour measurement error
- could back out shocks using inverse of policy function
- but could also use Kalman filter
- Dynare always uses the Kalman filter
- hardest part of the Kalman filter is calculating the inverse of $C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2}$ and this is typically not a difficult inversion.

Log-Likelihood

$$
\begin{aligned}
\ln L\left(Y^{T} \mid \Psi\right)= & -\left(\frac{1}{2}\right)\left(n_{x} \ln (2 \pi)+\ln \left(\left|\widehat{x}_{\hat{x}_{0}}\right|\right)+\widehat{x}_{0}^{\prime} \Sigma_{\widehat{x}_{0}}^{-1} \widehat{x}_{0}\right) \\
& -\left(\frac{1}{2}\right)\left(\operatorname{Tn} \operatorname{nn}(2 \pi)+\sum_{t=1}^{T}\left[\ln \left(\left|\Sigma_{\hat{y}_{t}}\right|\right)+\widehat{y}_{t}^{\prime} \Sigma_{\hat{y}_{t}}^{-1} \widehat{y}_{t}\right]\right)
\end{aligned}
$$

n_{y} : dimension of \hat{y}_{t}

For the neo-classical growth model

- Start with $x_{1}=\left[k_{0}, z_{0}\right], y_{1}=k_{0}^{*}$, and Σ_{1}
- Calculate

$$
\begin{aligned}
\hat{y}_{1} & =y_{1}-\widehat{\mathrm{E}}\left[y_{1} \mid x_{1}\right] \\
& =y_{1}-C x_{1}
\end{aligned}
$$

- Calculate $\widehat{\mathrm{E}}\left[x_{2} \mid y_{1}, x_{1}\right]$ using

$$
\widehat{\mathrm{E}}_{t} x_{t+1}=A \widehat{\mathrm{E}}_{t-1} x_{t}+K_{t} \hat{y}_{t}
$$

where

$$
K_{t}=\left(A \Sigma_{\hat{x}_{t}} C^{\prime}+G V_{3}\right)\left(C \Sigma_{\hat{x}_{t}} C^{\prime}+V_{2}\right)^{-1}
$$

For the neo-classical growth model

- Calculate

$$
\begin{aligned}
\hat{y}_{2} & =y_{2}-\widehat{\mathrm{E}}\left[y_{2} \mid y_{1}, x_{1}\right] \\
& =y_{2}-C \widehat{\mathrm{E}}\left[x_{2} \mid y_{1}, x_{1}\right]
\end{aligned}
$$

- etc.

Bayesian Estimation

- Conceptually, things are not that different
- Bayesian econometrics combines
- the likelihood, i.e., the data, with
- the prior
- You can think of the prior as additional data

Posterior

The joint density of parameters and data is equal to

$$
\begin{gathered}
P\left(Y^{T}, \Psi\right)=L\left(Y^{T} \mid \Psi\right) P(\Psi) \text { or } \\
P\left(Y^{T}, \Psi\right)=P\left(\Psi \mid Y^{T}\right) P\left(Y^{T}\right)
\end{gathered}
$$

Posterior

From this we can get Bayes rule: $P\left(\Psi \mid Y^{T}\right)=\frac{L\left(Y^{T} \mid \Psi\right) P(\Psi)}{P\left(Y^{T}\right)}$

Reverend Thomas Bayes (1702-1761)

Posterior

- For the distribution of $\Psi, P\left(Y^{T}\right)$ is just a constant.
- Therefore we focus on

$$
L\left(Y^{T} \mid \Psi\right) P(\Psi) \propto \frac{L\left(Y^{T} \mid \Psi\right) p(\Psi)}{P\left(Y^{T}\right)}=P\left(\Psi \mid Y^{T}\right)
$$

- One can always make $L\left(Y^{T} \mid \Psi\right) P(\Psi)$ a proper density by scaling it so that it integrates to 1

Evaluating the posterior

- Calculating posterior for given value of Ψ not problematic.
- But we are interested in objects of the following form

$$
\mathrm{E}\left[g(\Psi) \mid Y^{T}\right]=\frac{\int g(\Psi) P\left(\Psi \mid Y^{T}\right) d \Psi}{\int P\left(\Psi \mid Y^{T}\right) d \Psi}
$$

- Examples
- to calculate the mean of Ψ, let $g(\Psi)=\Psi$
- to calculate the probability that $\Psi \in \Psi^{*}$,
- let $g(\Psi)=1$ if $\Psi \in \Psi^{*}$ and
- let $g(\Psi)=0$ otherwise
- to calculate the posterior for $j^{\text {th }}$ element of Ψ
- $g(\Psi)=\Psi_{j}$

Evaluating the posterior

- Even Likelihood can typically only be evaluated numerically
- Numerical techniques also needed to evaluate the posterior

Evaluating the posterior

- Standard Monte Carlo integration techniques cannot be used
- Reason: cannot draw random numbers directly from $P\left(\Psi \mid Y^{T}\right)$
- being able to calculate $P\left(\Psi \mid Y^{T}\right)$ not enough to create a random number generator with that distribution
- Standard tool: Markov Chain Monte Carlo (MCMC)

Metropolis \& Metropolis-Hasting

- Metropolis \& Metropolis-Hasting are particular versions of the MCMC algorithm
- Idea:
- travel through the state space of Ψ
- weigh the outcomes appropriately

Metropolis \& Metropolis-Hasting

- Start with an initial value, Ψ_{0}
- discard the beginning of the sample, the burn-in phase, to ensure choice of Ψ_{0} does not matter

Metropolis \& Metropolis-Hasting

Subsequent values, Ψ_{i+1}, are obtained as follows

- Draw Ψ^{*} using the "stand in" density $f\left(\Psi^{*} \mid \Psi_{i}, \theta_{f}\right)$
- θ_{f} contains the parameters of $f(\cdot)$
- Ψ^{*} is a candidate for Ψ_{i+1}
- $\Psi_{i+1}=\Psi^{*}$ with probability $q\left(\Psi_{i+1} \mid \Psi_{i}\right)$
- $\Psi_{i+1}=\Psi_{i}$ with probability $1-q\left(\Psi_{i+1} \mid \Psi_{i}\right)$

Metropolis \& Metropolis-Hasting

properties of $f(\cdot)$

- $f(\cdot)$ should have fat tails relative to the posterior
- that is, $f(\cdot)$ should "cover" $P\left(\Psi \mid Y^{T}\right)$

Metropolis (used in Dynare)

$$
q\left(\Psi_{i+1} \mid \Psi_{i}\right)=\min \left[1, \frac{P\left(\Psi^{*} \mid Y^{T}\right)}{P\left(\Psi_{i} \mid Y^{T}\right)}\right]
$$

- $P\left(\Psi^{*} \mid Y^{T}\right) \geq P\left(\Psi_{i} \mid Y^{T}\right) \Longrightarrow$
- always include candidate as new element
- $P\left(\Psi^{*} \mid Y^{T}\right)<P\left(\Psi_{i} \mid Y^{T}\right) \Longrightarrow$
- Ψ^{*} not always included; the lower $P\left(\Psi^{*} \mid Y^{T}\right)$ the lower the chance it is included

Metropolis-Hasting

$$
q\left(\Psi_{i+1} \mid \Psi_{i}\right)=\min \left[1, \frac{P\left(\Psi^{*} \mid Y^{T}\right) / f\left(\Psi^{*} \mid \Psi_{i}, \theta_{f}\right)}{P\left(\Psi_{i} \mid Y^{T}\right) / f\left(\Psi_{i} \mid \Psi^{*}, \theta_{f}\right)}\right]
$$

- $P\left(\Psi^{*} \mid Y^{T}\right) / f\left(\Psi^{*} \mid \Psi_{i}, \theta_{f}\right)$ high:
- probability of Ψ^{*} high \& should be included with high prob.
- $P\left(\Psi_{i} \mid Y^{T}\right) / f\left(\Psi_{i} \mid \Psi^{*}, \theta_{f}\right)$ low \Longrightarrow
- you should move away from this Ψ value $\Longrightarrow q$ should be high
- If $f(\cdot)$ symmetric (as with random walk), then $f(\cdot)$ terms drop out and MH is M .

Choices for $f($.

- Random walk MH:

$$
\Psi^{*}=\Psi_{i}+\varepsilon \text { with } \mathrm{E}[\varepsilon]=0
$$

- and, for example,

$$
\varepsilon \sim N\left(0, \theta_{f}^{2}\right)
$$

- Independence sampler:

$$
f\left(\Psi^{*} \mid \Psi_{i}, \theta_{f}\right)=f\left(\Psi^{*} \mid \theta_{f}\right)
$$

Couple more points

- Is the singularity issue different with Bayesian statistics?
- Choosing prior
- Gibbs sampler

The singularity problem again

What happens in practice?

- lots of observations are available
- practioners don't want to exclude data \Longrightarrow
- add "structural" shocks

The singularity problem again

Problem with adding additional shocks

- measurement error shocks
- not credible that this is reason for gap between model and data
- structural shocks
- good reason, but wrong structural shocks \Longrightarrow misspecified model

Possible solution to singularity problem?

Today's posterior is tomorrow's prior

Possible solution to singularity problem?

Suppose you want the following:

- use 2 observables and
- only 1 structural shock

Possible solution to singularity problem?

(1) Start with first prior: $P_{1}(\Psi)$
(2) Use first observable Y_{1}^{T} to form first posterior

$$
F_{1}(\Psi)=L\left(Y_{1}^{T} \mid \Psi\right) P_{1}(\Psi)
$$

(3) Let second prior be first posterior: $P_{2}(\Psi)=F_{1}(\psi)$
(4) Use second observable Y_{2}^{T} to form second posterior

$$
F_{2}(\Psi)=L\left(Y_{2}^{T} \mid \Psi\right) P_{2}(\Psi)
$$

Final answer:

$$
\begin{aligned}
F_{2}(\Psi) & =L\left(Y_{2}^{T} \mid \Psi\right) P_{2}(\Psi) \\
& =L\left(Y_{2}^{T} \mid \Psi\right) L\left(Y_{1}^{T} \mid \Psi\right) P_{1}(\Psi)
\end{aligned}
$$

Obviously:

$$
\begin{aligned}
F_{2}(\Psi) & =L\left(Y_{2}^{T} \mid \Psi\right) L\left(Y_{1}^{T} \mid \Psi\right) P_{1}(\Psi) \\
& =L\left(Y_{1}^{T} \mid \Psi\right) L\left(Y_{2}^{T} \mid \Psi\right) P_{1}(\Psi)
\end{aligned}
$$

Thus, it does not matter which variable you use first

Properties of final posterior

- Final posterior could very well have multiple modes
- indicates where different variables prefer parameters to be
- This is only informative, not a disadvantage

Have we solved the singularity problem?

Problems of approach:

- Procedure avoids singularity problem by not considering joint implications of two observables
- Procdure misses some structural shock/misspecification

Key question:

- Is this worse than adding bogus shocks?

How to choose prior

(1) Without analyzing data, sit down and think problem in macro: we keep on using the same data so is this science or data mining?
(2) Don't change prior depending on results

Uninformative prior

- $P(\Psi)=1 \forall \Psi \in \mathbb{R} \Longrightarrow$ posterior $=$ likelihood
- $P(\Psi)=1 /(b-a)$ if $\Psi \in[a, b]$ is not uninformative
- Which one is the least informative prior?

$$
\begin{gathered}
P(\Psi)=1 /(b-a) \text { if } \Psi \in[a, b] \\
P(\ln \Psi)=1 /(\ln b-\ln a) \text { if } \Psi \in[\ln a, \ln b]
\end{gathered}
$$

Uninformative prior

- $P(\Psi)=1 \quad \forall \Psi \in \mathbb{R} \Longrightarrow$ posterior $=$ likelihood
- $P(\Psi)=1 /(b-a)$ if $\Psi \in[a, b]$ is not uninformative
- Which one is the least informative prior?

$$
\begin{gathered}
P(\Psi)=1 /(b-a) \text { if } \Psi \in[a, b] \\
P(\ln \Psi)=1 /(\ln b-\ln a) \text { if } \Psi \in[\ln a, \ln b]
\end{gathered}
$$

The objective of Jeffrey's prior is to ensure that the prior is invariant to such reparameterizations

How to choose (not so) informative priors

Let the prior inherit invariance structure of the problem:
(1) location parameter: If X is distributed as $f(x-\psi)$, then $Y=X+\phi$ have the same distribution but a different location. If the prior has to inherit this property, then it should be uniform.
(2) scale parameter: If X is distributed as $(1 / \sigma) f(x / \sigma)$, then $Y=\phi X$ has the same distribution as X except for a different scale parameter. If the prior has to inherit this property, then it should be of the form

$$
P(\psi)=1 / \psi
$$

Both are improper priors.
That is, they do not integrate to a finite number.

Not so informative priors

Let the prior be consistent with "total confusion"
(3) probability parameter: If ψ is a probability $\in[0,1]$, then the prior distribution

$$
P(\psi)=1 /(\psi(1-\psi))
$$

represents total confusion. The idea is that the elements of the prior correspond to different beliefs and everybody is given a new piece of info that the cross-section of beliefs would not change.
See notes by Smith

Gibbs sampler

Objective: Obtain T observations from $p\left(x_{1}, \cdots, x_{J}\right)$. Procedure:
(1) Start with initial observation $X^{(0)}$.
(2) Draw period t observation, $X^{(t)}$, using the following iterative scheme:

- draw $x_{j}^{(t)}$ from the conditional distribution:

$$
p\left(x_{j} \mid x_{1}^{(t)}, \cdots, x_{j-1}^{(t)}, x_{j+1}^{(t-1)}, \cdots, x_{J}^{(t-1)}\right)
$$

Gibbs sampler versus MCMC

- Gibbs sampler does not require stand-in distribution
- Gibbs sampler still requires the ability to draw from conditional \Longrightarrow not useful for estimation DSGE models

References

- Chib, S. and Greenberg, E., 1995, Understanding the Metropolis-Hastings Algorithm, The American Statistician.
- describes the basics
- Ljungqvist, L. and T.J. Sargent, 2004, Recursive Macroeconomic Theory
- source for the description of the Kalman filter
- Roberts, G.O., and J.S. Rosenthal, 2004, General state space Markov chains and MCMC algorithms, Probability Surveys.
- more advanced articles describing formal properties

References

- Smith, G.P., Expressing Prior Ignorance of a Probability Parameter, notes, University of Missouri
http://www.stats.org.uk/priors/noninformative/Smith.pdf on informative priors
- Syversveen, A.R, 1998, Noninformative Bayesian priors. Interpretation and problems with construction and applications
http://www.stats.org.uk/priors/noninformative/Syversveen1998.pdf
on informative priors

