
Introduction to Bayesian Estimation

Wouter J. Den Haan
London School of Economics

c© 2011 by Wouter J. Den Haan

May 31, 2015



Overview ML Kalman Filter Estimating DSGEs ML & DSGE Bayesian estimation MCMC Other

Overview

• Maximum Likelihood
• A very useful tool: Kalman filter
• Estimating DSGEs
• Maximum Likelihood & DSGEs

• formulating the likelihood
• Singularity when #shocks ≤ number of observables

• Bayesian estimation
• Tools:

• Metropolis Hastings
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Standard Maximum Likelihood problem

Theory:

yt = a0 + a1xt + εt

εt ∼ N(0, σ2)

xt : exogenous

Data: {yt, xt}T
t=1
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ML estimator

max
a0,a1,σ

T

∏
t=1

p (εt)

where

εt = yt − a0 − a1xt

p(εt) =
1

σ
√

2π
exp

(−ε2
t

2σ2

)
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ML estimator

max
a0,a1,σ

T

∏
t=1

1
σ
√

2π
exp

(
− (yt − a0 − a1xt)

2

2σ2

)
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Rudolph E. Kalman

born in Budapest, Hungary, on May 19, 1930
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Kalman filter

• Linear projection
• Linear projection with orthogonal regressors
• Kalman filter

The slides for the Kalman filter is based on Ljungqvist and Sargent’s
textbook
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Linear projection

• y: ny × 1 vector of random variables
• x: nx × 1 vector of random variables

• First and second moments exist

Ey = µy ỹ = y− µy Ex̃x̃′ = Σxx

Ex = µx x̃ = x− µx Eỹỹ′ = Σyy
Eỹx̃′ = Σyx
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Definition of linear projection

The linear projection of y on x is the function

Ê [y|x] = a+ Bx,

a and B are chosen to minimize

E trace
{
(y− a+ Bx)(y− a+ Bx)′

}
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Formula for linear projection

The linear projection of y on x is given by

Ê [y|x] = µy + ΣyxΣ−1
xx (x− µx)
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Difference with linear regression problem

• True model:

y = B̄x+ D̄z+ ε,
Ex = Ez = Eε = 0,E [ε|x, z] = 0, E [z|x] 6= 0

B̄ : measures the effect of x on y keeping all else– also z and
ε– constant.

• Particular regression model:

y = B̄x+ u
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Difference with linear regression problem

Comments:

• Least-squares estimate 6= B̄

• Projection:
Ê [y|x] = Bx = B̄x+ D̄Ê [z|x]

• Projection well defined
linear projection can include more than the direct effect:
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Message:

• You can always define the linear projection

• you don’t have to worry about the properties of the error term.
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Linear Projection with orthogonal regressors

• x = [x1, x2] and suppose that Σx1x2 = 0
• x1 and x2 could be vectors

Ê [y|x] = µy + ΣyxΣ−1
xx (x− µx)

= µy +
[
Σyx1 Σyx2

] [ Σ−1
x1x1

0
0 Σ−1

x2x2

]
(x− µx)

= µy + Σyx1
Σ−1

x1x1
(x1 − µx1

) + Σyx2
Σ−1

x2x2
(x2 − µx2

)

Thus
Ê [y|x] = Ê [y|x1] + Ê [y|x2]− µy (1)
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Time Series Model

xt+1 = Axt +Gw1,t+1

yt = Cxt +w2,t

Ew1,t = Ew2,t = 0

E
[

w1,t+1
w2,t

] [
w1,t+1

w2,t

]′
=

[
V1 V3
V′3 V2

]
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Time Series Model

• yt is observed, but xt is not

• the coeffi cients are known (could even be time-varying)

• Initial condition:
• x1 is a random variable (mean µx1

& covariance matrix Σ1)
(it is not unusual that xt is simply set equal to µx1

.

• w1,t+1 and w2,t are serially uncorrelated and orthogonal to x1
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Objective

The objective is to calculate

Êtxt+1 ≡ Ê [xt+1|yt, yt−1, · · · , y1, x̃1]

= Ê
[
xt+1|Yt, x̃1

]
where x̃1 is an initial estimate of x1

Trick: get a recursive formulation
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Orthogonalization of the information set

• Let
• ŷt = yt − Ê [yt|ŷt−1, ŷt−2, · · · , ŷ1, x̃1]
• Ŷt = {ŷt, ŷt−1, · · · , ŷ1}

• space spanned by {x̃1, Ŷt} = space spanned by {x̃1, Yt}

• That is, anything that can be expressed as a linear
combination with elements in {x̃1, Ŷt} can be expressed as a
linear combination of elements in {x̃1, Yt}.
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Orthogonalization of the information set

• Then

Ê
[
yt+1|Yt, x̃1

]
= Ê

[
yt+1|Ŷt, x̃1

]
= CÊ

[
xt+1|Ŷt, x̃1

]
(2)
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Derivation of the Kalman filter

From (1) we get

Ê
[
xt+1|Ŷt, x̃1

]
= Ê [xt+1|ŷt] + Ê

[
xt+1|Ŷt−1, x̃1

]
− Ext+1 (3)

The first term in (3) is a standard linear projection:

Ê [xt+1|ŷt] = Ext+1 + cov(xt+1, ŷt) [cov(ŷt, ŷt)]
−1 (ŷt − Eŷt)

= Ext+1 + cov(xt+1, ŷt) [cov(ŷt, ŷt)]
−1 ŷt
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Some algebra
• Similar to the definition of ŷt, let

x̂t+1 = xt+1 − Ê [xt+1|ŷt, ŷt−1, · · · , ŷ1, x̃1]

= xt+1 − Êtxt+1

• Let Σx̂t =Ex̂tx̂′t

cov(xt+1, ŷt) = AΣx̂tC
′ +GV3

cov(ŷt, ŷt) = CΣx̂tC
′ +V2

• To go from unconditional covariance, cov(·), to conditional Σx̂t
requires some algebra (see appendix of Ljungqvist-Sargent for
details)
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Using the derived expressions

Ê [xt+1|ŷt]

= Ext+1 + cov(xt+1, ŷt) [cov(ŷt, ŷt)]
−1 ŷt

= Ext+1 +
(
AΣx̂tC

′ +GV3
) (

CΣx̂tC
′ +V2

)−1 ŷt (4)
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Derivation Kalman filter

• Now get an expression for the second term in (3).

• From xt+1 = Axt +Gw1,t+1, we get

Ê
[
xt+1|Ŷt−1, x̃1

]
= AÊ

[
xt|Ŷt−1, x̃1

]
= AÊt−1xt (5)
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Using (4) and (5) in (3) gives the recursive expression

Êtxt+1 = AÊt−1xt + Ktŷt

where
Kt =

(
AΣx̂tC

′ +GV3
) (

CΣx̂tC
′ +V2

)−1
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Prediction for observable

From
yt+1 = Cxt+1 +w2,t+1

we get
Ê [yt+1|Yt, x̃1] = CÊtxt+1

Thus
ŷt+1 = yt+1 − CÊtxt+1
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Updating the covariance matrix

• We still need an equation to update Σx̂t . This is actually not
that hard. The result is

Σx̂t+1 = AΣx̂tA
′ +GV1G′ − Kt(AΣx̂tC

′ +GV3)
′

• Expression is deterministic and does not depend particular
realizations. That is, precision only depends on the coeffi cients
of the time series model
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Applications Kalman filter

• signal extraction problems
• GPS, computer vision applications, missiles

• prediction
• simple alternative to calculating inverse policy functions

• (see below)
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Estimating DSGE models

• Forget the Kalman filter for now, we will not use it for a while
• What is next?

• Specify the neoclassical model that will be used as an example
• Specify the linearized version
• Specify the estimation problem
• Maximum Likelihood estimation
• Explain why Kalman filter is useful
• Bayesian estimation
• MCMC, a necessary tool to do Bayesian estimation
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Neoclassical growth model
First-order conditions

c−ν
t = Et

[
βc−ν

t+1(αzt+1kα−1
t + 1− δ)

]
ct + kt = ztkα

t−1 + (1− δ)kt−1

zt = (1− ρ) + ρzt−1 + εt

εt ∼ N(0, σ2)

Ψ = {β, ν, α, δ, ρ , σ}
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Policy functions

• FOCs are not like

yt = a0 + a1xt + εt, εt ∼ N
(

0, σ2
)

• But the policy functions are.similar

kt = g(kt−1, zt; Ψ)
ct = h(kt−1, zt; Ψ)
zt = (1− ρ) + ρzt−1 + εt
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Policy functions

Problems:

• functional form of policy functions not known
• they are nonlinear

Solution to both problems:

• use linearized approximations around steady state and treat
these as the truth
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Steady state

steady state ≡ solution when
• no uncertainty, i.e., σ = 0
• no transition left
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Steady state

• no uncertainty =⇒ no Et [·] in equations
• no transition =⇒ zt = zt−1 and ct = ct+1

z̄ = (1− ρ) + ρz̄ =⇒ z̄ = 1

c̄−ν = βc̄−ν(αk̄α−1 + 1− δ) =⇒ k̄ =
(

βα

1− β (1− δ)

)1/(1−α)

budget constraint =⇒ c̄ = k̄α − δk̄
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Back to FOCs

FOC can be written as(
ztkα

t−1 + (1− δ) kt−1 − kt
)−ν

= Et

[
β (zt+1kα

t + (1− δ) kt − kt+1)
−ν (αzt+1kα−1

t + 1− δ)
]

or
Et

[
F(k̂t−1, k̂t, k̂t+1, ẑt, ẑt+1; Ψ)

]
= 0

where
k̂t = kt − k̄, ẑt = zt − z̄
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linearized policy functions

• Getting linearized policy functions correct in general is doable
but not trivial

• I just give rough idea for this simple example
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linearized policy functions

Et

[
F(k̂t−1, k̂t, k̂t+1, ẑt, ẑt+1; Ψ)

]
= 0

=⇒ Et

[
k̂t+1 + φ1k̂t + φ2k̂t−1 + φ̃3ẑt + φ̃4ẑt+1

]
= 0

=⇒ Et

[
k̂t+1

]
+ φ1k̂t + φ2k̂t−1 + φ3ẑt = 0, where φ3 = φ̃3 + ρφ̃4

The φ coeffi cients are known functions of Ψ
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linearized policy functions

• Conjecture that solution is as follows:

k̂t = ak,kk̂t−1 + ak,zẑt

• now we just have to solve for ak,k and ak,z
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linearized policy functions

• Plug conjecture into linearlized Euler equation gives
0 = 0 =
Et

[
ak,kk̂t + ak,zẑt+1

]
ak,k

(
ak,kk̂t−1 + ak,zẑt

)
+ ak,zρẑt

+φ1

(
ak,kk̂t−1 + ak,zẑt

)
+φ1

(
ak,kk̂t−1 + ak,zẑt

)
+φ2k̂t−1 + φ3ẑt +φ2k̂t−1 + φ3ẑt



Overview ML Kalman Filter Estimating DSGEs ML & DSGE Bayesian estimation MCMC Other

linearized policy functions

• This has to hold for all k̂t−1 and ẑt =⇒

a2
k,k + φ1ak,k + φ2 = 0 and

ak,kak,z + ρak,z + φ1ak,z + φ3 = 0

• Concavity implies that only one solution for ak,k is less than 1
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Linearized solution

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
zt = (1− ρ) + ρzt−1 + εt

εt ∼ N(0, σ2)

z0 ∼ N(1, σ2/(1− ρ2)

k0 is given

• ak,k, ak,z, and k̄ are known functions of the structural parameters
=⇒ better notation would be ak,k(Ψ), ak,z(Ψ), and k̄(Ψ)

• Consumption has been substituted out
• Approximation error is ignored; linearized model is treated as
the true model with Ψ as the parameters
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Linearized solution & approximation error

• Approximation error is ignored
• This is fine for simple models with only aggregate risk
• But never forget these are approximations

• in particular; ak,k(Ψ) and ak,z(Ψ) do not depend on σ; this is
called certainty equivalence
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Estimation problem

Given data for capital, {kt}T
0 , estimate the set of coeffi cients, Ψ

Ψ = [α, β, ν, δ, ρ, σ, z0]

• No data on productivity, zt.

• If you had data on zt =⇒ Likelihood = 0 for sure
• More on this below.
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Formulation of the Likelihood

• Let YT be the complete sample

L(YT|Ψ) = p(z0)
T

∏
t=1

p(zt|zt−1)

p(zt|zt−1) corresponds with probability of a particular value for εt
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Formulation of the Likelihood

Basic idea:

• Given a value for Ψ and give the data set, YT, you can
calculate the implied values for εt

• We know the distribution of εt =⇒

• We can calculate the probability (likelihood) of {ε1, · · · , εT}
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Formulation of the Likelihood

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)

=⇒

zt =
ak,zz̄− k̄+ ak,kk̄

ak,z
− ak,k

ak,z
kt−1 +

1
ak,z

kt

zt = b0 + b1kt−1 + b2kt

εt = zt − (1− ρ)− ρzt−1
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Formulation of the Likelihood

• εt is obtained by inverting the policy function

• For larger systems, this inversion is not as easy to implement.
• Below, we show an alternative
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Formulation of the Likelihood

A bit more explicit

• Take a value for Ψ
• Given k0 and k1 you can calculate z1

• Given z0 you can calculate ε1

• Continuing, you can calculate εt ∀t
• To make explicit the dependence of εt on Ψ, write εt(Ψ)
• The Likelihood can thus be written as

T

∏
t=1

1
σ
√

2π
exp

{
− (εt(Ψ))

2

2σ2

}
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Too few unobservables & singularities

• Above we assumed that there was no data on zt

• Suppose you had data on zt

• There are two cases to consider
• Data not exactly generated by this model (most likely case)
=⇒ Likelihood = 0 for any value of Ψ

• Data is exactly generated by this model
=⇒ Likelihood = 1 for true value of Ψ and
=⇒ Likelihood = 0 for any other value for Ψ
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Too few unobservables & singularities

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)

Using the values for 4 periods, you can pin down k̄, z̄, ak,k, and ak,z.

• What about values for additional periods?
• Data generated by model (unlikely of course)
=⇒ additional observations will fit this equation too

• Data not generated by model
=⇒ additional observations will not fit this equation
=⇒ Likelihood = zero
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Too few unobservables & singularities

• Can’t I simply add an error term?

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄) + ut

• Answer: NO not in general
• Why not? It is ok in standard regression
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Too few unobservables & singularities

Why is the answer NO in general?

1 ut represents other shocks such as preference shocks
=⇒ it’s presence is likely to affect k̄, ak,k, and ak,z

2 ut represents measurement error
=⇒ you are fine from an econometric stand point
=⇒ but is residual only measurement error?
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What if you also observe consumption?

Suppose you observe kt, ct, but not zt?

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
ct = c̄+ ac,k(kt−1 − k̄) + ac,z(zt − z̄)

• Recall that the coeffi cients are functions of Ψ
• Given value of Ψ you can solve for zt from top equation
• Given value of Ψ you can solve for zt from bottom equation
• With real world data you will get inconsistent answers.
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Unobservables and avoiding singularities

General rule:

• For every observable you need at least one unobservable shock

• Letting them be measurement errors is hard to defend

• The last statement does not mean that you cannot also add
measurement errors
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Using the Kalman filter

xt+1 = Axt +Gw1,t+1 (6)

yt = Cxt +w2,t (7)

• (6) describes the equations of the model;
• xt consists of the "true" values of state variables like capital
and productivity.

• (7) relates the observables, yt, to the "true" values
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Example

• consumption and capital are observed with error
• c∗t = ct + uc,t
• k∗t = kt + uk,t

• zt is unobservable

• x′t = [kt−1 − k̄, zt−1 − z̄]
• w1,t+1 = εt

• y′t = [k
∗
t−1 − k̄, c∗t − c̄]
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Example

• (6) gives policy function for kt and law of motion for zt[
kt − k̄

zt+1 − z̄

]
=

[
ak,k ak,z
0 ρ

] [
kt−1 − k̄

zt − z̄

]
+

[
0

εt+1

]

• Equation (7) is equal to k∗t−1 − k̄
ct − c̄
c∗t − c̄

 =
 1 0

ac,k ac,z
ac,k ac,z

 [ kt−1 − k̄
zt − z̄

]
+

 uk,t
0

uc,t


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Back to the Likelihood

• yt consists of k∗t and c∗t and the model is given by (6) and (7).
• From the Kalman filter we get ŷt and Σŷt

Ê
[
xt|Yt−1, x̃1

]
= AÊ

[
xt−1|Yt−2, x̃1

]
+ Kt−1ŷt−1

Ê
[
yt|Yt−1, x̃1

]
= CÊ

[
xt|Yt−1, x̃1

]
ŷt = yt − Ê

[
yt|Yt−1, x̃1

]
Σx̂t+1 = AΣx̂tA

′ +GV1G′ − Kt(AΣx̂tC+GV3)
′

Σŷt = CΣx̂tC
′ +V2
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Back to the Likelihood

• ŷt+1 is normally distributed because

• this is a linear model and underlying shocks are linear

• Kalman filter generates ŷt+1 and Σŷt

• (given Ψ and observables, YT)

• Given normality calculate likelihood of {ŷt+1}
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Kalman Filter versus inversion

with measurement error

• have to use Kalman filter

withour measurement error

• could back out shocks using inverse of policy function
• but could also use Kalman filter

• Dynare always uses the Kalman filter
• hardest part of the Kalman filter is calculating the inverse of

CΣx̂tC
′ +V2 and this is typically not a diffi cult inversion.
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Log-Likelihood

ln L(YT|Ψ) = −
(

1
2

)(
nx ln(2π) + ln(|Σx̂0

|) + x̂′0Σ−1
x̂0

x̂0

)
−
(

1
2

)(
Tny ln(2π) +

T

∑
t=1

[
ln(|Σŷt |) + ŷ′tΣ

−1
ŷt

ŷt

])

ny : dimension of ŷt
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For the neo-classical growth model

• Start with x1 = [k0, z0], y1 = k∗0, and Σ1

• Calculate

ŷ1 = y1 − Ê [y1|x1]

= y1 − Cx1

• Calculate Ê [x2|y1, x1] using

Êtxt+1 = AÊt−1xt + Ktŷt

where
Kt =

(
AΣx̂tC

′ +GV3
) (

CΣx̂tC
′ +V2

)−1
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For the neo-classical growth model

• Calculate

ŷ2 = y2 − Ê [y2|y1, x1]

= y2 − CÊ [x2|y1, x1]

• etc.
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Bayesian Estimation

• Conceptually, things are not that different

• Bayesian econometrics combines
• the likelihood, i.e., the data, with
• the prior

• You can think of the prior as additional data
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Posterior

The joint density of parameters and data is equal to

P(YT, Ψ) = L(YT|Ψ)P(Ψ) or

P(YT, Ψ) = P(Ψ|YT)P(YT)
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Posterior

From this we can get Bayes rule: P(Ψ|YT) = L(YT|Ψ)P(Ψ)
P(YT)

Reverend Thomas Bayes (1702-1761)
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Posterior

• For the distribution of Ψ, P(YT) is just a constant.

• Therefore we focus on

L(YT|Ψ)P(Ψ) ∝ L(YT|Ψ)p(Ψ)
P(YT)

= P(Ψ|YT)

• One can always make L(YT|Ψ)P(Ψ) a proper density by
scaling it so that it integrates to 1
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Evaluating the posterior

• Calculating posterior for given value of Ψ not problematic.
• But we are interested in objects of the following form

E
[
g(Ψ)|YT

]
=

∫
g(Ψ)P(Ψ|YT)dΨ∫

P(Ψ|YT)dΨ

• Examples
• to calculate the mean of Ψ, let g(Ψ) = Ψ
• to calculate the probability that Ψ ∈ Ψ∗,

• let g(Ψ) = 1 if Ψ ∈ Ψ∗ and
• let g(Ψ) = 0 otherwise

• to calculate the posterior for jth element of Ψ
• g(Ψ) = Ψj
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Evaluating the posterior

• Even Likelihood can typically only be evaluated numerically

• Numerical techniques also needed to evaluate the posterior
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Evaluating the posterior

• Standard Monte Carlo integration techniques cannot be used
• Reason: cannot draw random numbers directly from P(Ψ|YT)
• being able to calculate P(Ψ|YT) not enough to create a
random number generator with that distribution

• Standard tool: Markov Chain Monte Carlo (MCMC)
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Metropolis & Metropolis-Hasting

• Metropolis & Metropolis-Hasting are particular versions of the
MCMC algorithm

• Idea:
• travel through the state space of Ψ
• weigh the outcomes appropriately
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Metropolis & Metropolis-Hasting

• Start with an initial value, Ψ0

• discard the beginning of the sample, the burn-in phase, to
ensure choice of Ψ0 does not matter
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Metropolis & Metropolis-Hasting

Subsequent values, Ψi+1, are obtained as follows

• Draw Ψ∗ using the "stand in" density f (Ψ∗|Ψi, θf )

• θf contains the parameters of f (·)

• Ψ∗ is a candidate for Ψi+1

• Ψi+1 = Ψ∗ with probability q(Ψi+1|Ψi)
• Ψi+1 = Ψi with probability 1− q(Ψi+1|Ψi)
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Metropolis & Metropolis-Hasting

properties of f (·)

• f (·) should have fat tails relative to the posterior
• that is, f (·) should "cover" P(Ψ|YT)



Overview ML Kalman Filter Estimating DSGEs ML & DSGE Bayesian estimation MCMC Other

Metropolis (used in Dynare)

q(Ψi+1|Ψi) = min
[

1,
P(Ψ∗|YT)

P(Ψi|YT)

]
• P(Ψ∗|YT) ≥ P(Ψi|YT) =⇒

• always include candidate as new element

• P(Ψ∗|YT) < P(Ψi|YT) =⇒
• Ψ∗ not always included; the lower P(Ψ∗|YT) the lower the
chance it is included
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Metropolis-Hasting

q(Ψi+1|Ψi) = min

[
1,

P(Ψ∗|YT)/f (Ψ∗|Ψi, θf )

P(Ψi|YT)/f (Ψi|Ψ∗, θf )

]

• P(Ψ∗|YT)/f (Ψ∗|Ψi, θf ) high:

• probability of Ψ∗ high & should be included with high prob.

• P(Ψi|YT)/f (Ψi|Ψ∗, θf ) low =⇒
• you should move away from this Ψ value =⇒ q should be high

• If f (·) symmetric (as with random walk), then f (·) terms drop
out and MH is M.
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Choices for f(.)

• Random walk MH:

Ψ∗ = Ψi + ε with E [ε] = 0

• and, for example,
ε ∼ N(0, θ2

f )

• Independence sampler:

f (Ψ∗|Ψi, θf ) = f (Ψ∗|θf )
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Couple more points

• Is the singularity issue different with Bayesian statistics?
• Choosing prior
• Gibbs sampler
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The singularity problem again

What happens in practice?

• lots of observations are available
• practioners don’t want to exclude data =⇒

• add "structural" shocks
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The singularity problem again

Problem with adding additional shocks

• measurement error shocks
• not credible that this is reason for gap between model and data

• structural shocks
• good reason, but wrong structural shocks =⇒ misspecified
model
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Possible solution to singularity problem?

Today’s posterior is tomorrow’s prior
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Possible solution to singularity problem?

Suppose you want the following:

• use 2 observables and
• only 1 structural shock
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Possible solution to singularity problem?

1 Start with first prior: P1(Ψ)
2 Use first observable YT

1 to form first posterior

F1(Ψ) = L(YT
1 |Ψ)P1(Ψ)

3 Let second prior be first posterior: P2 (Ψ) = F1 (ψ)

4 Use second observable YT
2 to form second posterior

F2(Ψ) = L(YT
2 |Ψ)P2(Ψ)
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Final answer:

F2(Ψ) = L(YT
2 |Ψ)P2(Ψ)

= L(YT
2 |Ψ)L(YT

1 |Ψ)P1(Ψ)

Obviously:

F2(Ψ) = L(YT
2 |Ψ)L(YT

1 |Ψ)P1(Ψ)

= L(YT
1 |Ψ)L(YT

2 |Ψ)P1(Ψ)

Thus, it does not matter which variable you use first
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Properties of final posterior

• Final posterior could very well have multiple modes
• indicates where different variables prefer parameters to be

• This is only informative, not a disadvantage
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Have we solved the singularity problem?

Problems of approach:

• Procedure avoids singularity problem by not considering joint
implications of two observables

• Procdure misses some structural shock/misspecification

Key question:

• Is this worse than adding bogus shocks?
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How to choose prior

1 Without analyzing data, sit down and think
problem in macro: we keep on using the same data
so is this science or data mining?

2 Don’t change prior depending on results
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Uninformative prior

• P(Ψ) = 1 ∀Ψ ∈ R =⇒ posterior = likelihood
• P (Ψ) = 1/ (b− a) if Ψ ∈ [a, b] is not uninformative
• Which one is the least informative prior?

P (Ψ) = 1/ (b− a) if Ψ ∈ [a, b]
P (ln Ψ) = 1/ (ln b− ln a) if Ψ ∈ [ln a, ln b]
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Uninformative prior

• P(Ψ) = 1 ∀Ψ ∈ R =⇒ posterior = likelihood
• P (Ψ) = 1/ (b− a) if Ψ ∈ [a, b] is not uninformative
• Which one is the least informative prior?

P (Ψ) = 1/ (b− a) if Ψ ∈ [a, b]
P (ln Ψ) = 1/ (ln b− ln a) if Ψ ∈ [ln a, ln b]

The objective of Jeffrey’s prior is to ensure that the prior is
invariant to such reparameterizations
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How to choose (not so) informative priors
Let the prior inherit invariance structure of the problem:

1 location parameter: If X is distributed as f (x− ψ), then
Y = X+ φ have the same distribution but a different location.
If the prior has to inherit this property, then it should be
uniform.

2 scale parameter: If X is distributed as (1/σ) f (x/σ), then
Y = φX has the same distribution as X except for a different
scale parameter. If the prior has to inherit this property, then it
should be of the form

P (ψ) = 1/ψ

Both are improper priors.
That is, they do not integrate to a finite number.
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Not so informative priors

Let the prior be consistent with "total confusion"

3 probability parameter: If ψ is a probability ∈ [0, 1], then the
prior distribution

P(ψ) = 1/ (ψ (1− ψ))

represents total confusion. The idea is that the elements of the
prior correspond to different beliefs and everybody is given a
new piece of info that the cross-section of beliefs would not
change.
See notes by Smith
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Gibbs sampler

Objective: Obtain T observations from p(x1, · · · , xJ).
Procedure:

1 Start with initial observation X(0).
2 Draw period t observation, X(t), using the following iterative
scheme:

• draw x(t)j from the conditional distribution:

p
(

xj|x(t)1 , · · · , x(t)j−1, x(t−1)
j+1 , · · · , x(t−1)

J

)
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Gibbs sampler versus MCMC

• Gibbs sampler does not require stand-in distribution
• Gibbs sampler still requires the ability to draw from conditional
=⇒ not useful for estimation DSGE models
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