
Dynare

Wouter J. Den Haan
London School of Economics

c© by Wouter J. Den Haan

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Introduction

• What is the objective of perturbation?
• Peculiarities of Dynare & some examples
• Incorporating Dynare in other Matlab programs
• Impulse Response Functions
• Local and/or global approximation?
• Perturbation and the effect of uncertainty on the solution
• Pruning

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Objective of 1st-order perturbation

• Obtain linear approximations to the policy functions that satisfy
the first-order conditions

• state variables: xt = [x1,t x2,t x3,t · · · xn,t]′

• result:
yt = ȳ+ (xt − x̄)′a

• a bar above a variable indicates steady state value

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Underlying theory

• Model:
Et [f (g(x))] = 0,

• f (x) is completely known
• g(x) is the unknown policy function.

• Perturbation: Solve sequentially for the coeffi cients of the
Taylor expansion of g(x).

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Neoclassical growth model

• xt = [kt−1, zt]

• yt = [ct, kt, zt]

• linearized solution:

ct = c̄+ ac,k(kt−1 − k̄) + ac,z(zt − z̄)
kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
zt = ρzt−1 + εt

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Linear in what variables?

• Dynare does not understand what ct is.

• could be level of consumption
• could be log of consumption
• could be rainfall in Scotland

• Dynare simply generates a linear solution in what you specify
as the variables

• More on this below

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Peculiarities of Dynare

• Variables known at beginning of period t must be dated t− 1.

• Thus,
• kt: the capital stock chosen in period t
• kt−1: the capital stock available at beginning of period t

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Peculiarities of Dynare

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
zt = ρzt−1 + εt

can of course be written (less conveniently) as

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,zεt
zt = ρzt−1 + εt

with
ak,z−1 = ρak,z

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Peculiarities of Dynare

• Dynare gives the solution in the less convenient form:

ct = c̄+ ac,k(kt−1 − k̄) + ac,z−1(zt−1 − z̄) + ac,zεt
kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,zεt

zt = ρzt−1 + εt

• But you can rewrite it in the more convenient shorter form

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Dynare program blocks

• Labeling block: indicate which symbols indicate what
• variables in "var"
• exogenous shocks in "varexo"
• parameters in "parameters"

• Parameter values block: Assign values to parameters

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Dynare program blocks

• Model block: Between "model" and "end" write down the n
equations for n variables
• the equations have conditional expectations, having a (+1)
variable makes Dynare understand there is one in this equation

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Dynare program blocks

• Initialization block: Dynare has to solve for the steady state.
This can be the most diffi cult part (since it is a true non-linear
problem). So good initial conditions are important

• Random shock block: Indicate the standard deviation for the
exogenous innovation

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Dynare program blocks

• Solution & Properties block:
• Solve the model with the command

• 1st-order: stoch_simul(order=1,nocorr,nomoments,IRF=0)
• 2nd-order: stoch_simul(order=2,nocorr,nomoments,IRF=0)

• Dynare can calculate IRFs and business cycle statistics. E.g.,
• stoch_simul(order=1,IRF=30),
• but I would suggest to program this yourself (see below)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Running Dynare

• In Matlab change the directory to the one in which you have
your *.mod files

• In the Matlab command window type

dynare programname

or

dynare programname.mod

• This will create and run several Matlab files

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Model with productivity in levels (FOCs A)

Specification of the problem

max{ct,kt}∞
t=1

E ∑∞
t=1 βt−1 c1−ν

t −1
1−ν

s.t.
ct + kt = ztkα

t−1 + (1− δ)kt−1
zt = (1− ρ) + ρzt−1 + εt

k0 given
Et[εt+1] = 0 & Et[ε2

t+1] = σ2

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Distribution of innovation

• 1st-order approximations:
• solution assumes that Et[εt+1] = 0
• other properties of the distribution do not matter

• 2nd-order approximations:
• solution assumes that Et[εt+1] = 0
• σ matters, it affects the constant of the policy function
• other properties of the distribution do not matter

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Everything in levels: FOCs A

Model equations:

c−ν
t = Et

[
βc−ν

t+1(αzt+1kα−1
t + 1− δ)

]
ct + kt = ztkα

t−1 + (1− δ)kt−1

zt = (1− ρ) + ρzt−1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1-delta);
c+k=z*k(-1)^alpha+(1-delta)k(-1);
z=(1-rho)+rho*z(-1)+e;

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Policy functions reported by Dynare

• δ = 0.025, ν = 2, α = 0.36, β = 0.99, and ρ = 0.95

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

!!!! You have to read output as

k z c
constant 37.989254 1.000000 2.754327
k(-1)-kss 0.976540 -0.000000 0.033561
z(-1)-zss 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

• That is, explanatory variables are relative to steady state.
• (Note that steady state of e is zero by definition)
• If explanatory variables take on steady state values, then
choices are equal to the constant term, which of course is
simply equal to the corresponding steady state value

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Changing amount of uncertainty

Suppose σ = 0.1 instead of 0.007

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

• Any change?

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Model with productivity in logs

Specification of the problem

max
{ct,kt}∞

t=1

E
∞

∑
t=1

βt−1 c1−ν
t − 1
1− ν

s.t.

ct + kt = exp(zt)kα
t−1 + (1− δ)kt−1

zt = ρzt−1 + εt

k0 given, Et[εt+1] = 0

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Variables in levels & prod. in logs - FOCs B

Model equations:

c−ν
t = Et

[
βc−ν

t+1(α exp(zt+1)kα−1
t + 1− δ)

]
ct + kt = exp(zt)kα

t−1 + (1− δ)kt−1
zt = ρzt−1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*exp(z(+1))*k^(alpha-1)+1-delta);
c+k=exp(lz)*k(-1)^alpha+(1-delta)k(-1);
lz=rho*lz(-1)+e;

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Linear solution in what?

Dynare gives a linear system in what you specify the variables to be

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Variables in logs - FOCs C

Model equations:

(exp(c̃t))
−ν =

= Et

[
β(exp(c̃t+1))

−ν(α exp(zt+1)(exp(k̃t))
α−1 + 1− δ)

]
exp(c̃t) + exp(k̃t) = exp(zt)(exp(k̃t−1))

α + (1− δ) exp(k̃t−1)

zt = ρzt−1 + εt

The variables c̃t and k̃t are the log of consumption and capital.

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

All variables in logs - FOCs C

Model equations (rewritten a bit)

exp(−νc̃t)

= Et
[
β exp(−νc̃t+1)(α exp(zt+1 + (α− 1)k̃t) + 1− δ)

]
exp(c̃t) + exp(k̃t) = exp(zt + αk̃t−1) + (1− δ) exp(k̃t−1)

zt = ρzt−1 + εt

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

All variables in logs - FOCs C

Dynare equations:

exp(-nu*lc)=beta*exp(-nu*lc(+1))*
(alpha*exp(lz(+1)+(alpha-1)*lk))+1-delta);

exp(lc)+exp(lk)
=exp(lz+alpha*lk(-1))+(1-delta)exp(lk(-1));

lz=rho*lz(-1)+e;

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

All variables in logs - FOCs C

• This system gives policy functions that are linear in the
variables lc, i.e., ln(ct), lk,i.e., ln(kt), and lz, i.e., ln(zt)

• Note that we could have found the coeffi cients of the log
system without rerunning Dynare.
To understand consider the following:

1 How would coeffi cients change if we use (ct − css)/css instead
of ct as variable?

2 How would they change if we use ln (ct) instead of
(ct − css)/css?

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

All variables in logs - FOCs C

Is the following system any different?

exp(-nu*c)=beta*exp(-nu*c(+1))*
(alpha*exp(z(+1)+(alpha-1)*k))+1-delta);

exp(c)+exp(k)=exp(z+alpha*k(-1))+(1-delta)exp(k(-1));

z=rho*z(-1)+e;

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Example with analytical solution

• If δ = ν = 1 then we know the analytical solution. It is

kt = αβ exp(zt)ka
t−1

ct = (1− αβ) exp(zt)ka
t−1

or

ln kt = ln(αβ) + α ln kt−1 + zt

ln ct = ln(1− αβ) + α ln kt−1 + zt

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Are linear and loglinear the same?
Suppose that k0 = 0.798 & zt = 0 ∀t. Then the two time paths are
given by

0 1 2 3 4 5 6 7
0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

t i m e

ca
pi

ta
l

l i n e a r

l o g l i n e a r

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Substitute out consumption- FOCs D

Model equations:

[
zt exp(αk̃t−1) + (1− δ) exp(k̃t−1)− exp(k̃t)

]−ν

=

Et

{
β

([
exp(zt+1 + αk̃t) + (1− δ) exp(k̃t)− exp(k̃t+1)

]−ν×
(α exp(zt+1 + (α− 1)k̃t) + 1− δ)

)}

zt = ρzt−1 + εt

Does this substitution affect the solution?

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Do it yourself!

• Try to do as much yourself as possible

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

What (not) to do your self

• Find the policy functions:
• can be quite tricky, so let Dynare do it.

• IRFs, business cycle statistics, etc:
• easy to program yourself
• you know exactly what you are getting

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Why do things yourself?

• Dynare linearizes everything
• Suppose you have an approximation in levels
• Add the following equation to introduce output

yt = ztkα
t h1−α

t

• Dynare will take a first-order condition of this equation to get a
first-order approximation for yt

• But you already have solutions for kt and ht

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Why do things yourself?

• Getting the policy rules requires a bit of programming
=⇒ let Dynare do this for you

• But, program more yourself =⇒ you understand more
• Thus program yourself the simpler things:

• IRFs, simulated time paths, business cycle statistics, etc
• That is, use stoch_simul(order=1,nocorr,nomoments,IRF=0)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Tricks

• Incorporating Dynare in other Matlab programs
• Read parameter values in *.mod file from external file
• Read Dynare policy functions as they appear on the screen
• How to get good initial conditions to solve for steady state

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Keeping variables in memory

• Dynare clears all variables out of memory
• To overrule this, use

dynare program.mod noclearall

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Saving solution to a file

• Replace the file "disp_dr.m" with alternatives available on my
website

• I made two changes:
• The original Dynare file only writes a coeffi cient to the screen
if it exceeds 10-6 in absolute value. I eliminated this condition

• I save the policy functions, exactly the way Dynare now writes
them to the screen

To load the policy rules into a matrix called "decision" simply type

load dynarerocks

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Loops

• The last trick allows you to run the same dynare program for
different parameter values

• Suppose your Dynare program has the command

nu=3;

• You would like to run the program twice; once for nu=3, and
once for nu=5.

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Loops

1 In your Matlab program, loop over the different values of nu.
Save the value of nu and the associated name to the file
"parameterfile":

save parameterfile nu

and then run Dynare

2 In your Dynare program file, replace the command "nu = 3"
with

load parameterfile

set_param_value(’nu’,nu);

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

This does the same

1 Loop over eta instead of nu

save hangten eta

2 In your *.mod file
load hangten

set_param_value(’nu’,eta);

• the name of the file is abitrary
• in set_param_value(’·’,·), the first argument is the name in
your *.mod file and the second is the numerical vlaue

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Homotophy

• Hardest part of Dynare is to solve for steady state
• Homotophy makes this a lot easier
• Suppose you want to the x such that

f (x; α1) = 0

and suppose that you know the solution for α0

• Consider
f (x; ωα1 + (1−ω)α0) = 0

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Homotophy

•
f (x; ωα1 + (1−ω)α0) = 0

• Set ω to a small value
• Solve for x using solution for α0 as initial condition
• Increase ω slightly
• Solve for x using the latest solution for x as initial condition
• Continue until ω = 1

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Homotophy

You could even use

•
ωf (x; α1) + (1−ω) g(x; α0) = 0

as your homotophy system
• Works best is f (x; α1) is close to g(x; α0)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Using loop to get good initial conditions

With a loop you can update the initial conditions used to solve for
steady state

1 Use parameters to define initial conditions

2 Solve model for simpler case

3 Gradually change parameter

4 Alternatives:

1 use different algorithm to solve for steady state:
solve_algo=1,2, or 3

2 solve for coeffi cients instead of variables

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Simple model with endogenous labor

1 Solve for c, k, h using

1 = β(α (k/h)α−1 + 1− δ)
c+ k = kαh1−α + (1− δ)k
c−ν(1− α)(k/h)α = φhκ

φ = 1

2 Or solve for c, k, φ using

1 = β(α (k/h)α−1 + 1− δ)
c+ k = kαh1−α + (1− δ)k
c−ν(1− α)(k/h)α = φhκ

h = 0.3

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Impulse Response functions

Definition: The effect of a one-standard-deviation shock

• Take as given k0, z0, and time series for εt, {εt}T
t=1

• Let {kt}T
t=1 be the corresponding solutions

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Impulse Response functions

• Consider the time series ε∗t such that

ε∗t = εt for t 6= τ
ε∗t = εt + σ for t = τ

• Let {k∗t }T
t=1 be the corresponding solutions

• Impulse response functions are calculated as

IRFk
j = k∗τ+j − kτ+j for j ≥ 0 if k is in logs

IRFk
j =

k∗τ+j − kτ+j

kτ+j
for j ≥ 0 if k is in levels

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Impulse Response functions

• Consider the time series ε∗t such that

ε∗t = εt for t 6= τ
ε∗t = εt + σ for t = τ

• Let {k∗t }T
t=1 be the corresponding solutions

• Impulse response functions are calculated as

IRFk
j (σ) = k∗τ+j − kτ+j for j ≥ 0

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

IRFs in general

• In general, IRFs will depend on
• State of the economy when the shock occurs

• thus depends on {εt}τ
t=1

• Future shocks
• thus depends on {εt}∞

t=τ+1

• In general, IRFk
j (σ) /σ depends on sign and size of σ

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

IRFs in linear models

• In linear models, IRFs do not depend on
• State of the economy when the shock occurs
• Future shocks

• In linear modles, IRFk
j (σ) /σ does not depend on sign and

size of σ

=⇒ You are free to pick the conditions anyway you want (including
the easiest ones)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

IRFs in linear models

Dynare gives you

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,εεt

Easiest conditions:

• Start at k0 = k̄ and z0 = z̄ (= 0)
• Let ε1 = σε and εt = 0 for t > 1
• Calculate time path for zt

• Calculate time path for kt

• Calculate time path for other variables

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Impulse Response functions

higher-order case:

• One could repeat procedure described in last slide
• But this is just one of the many impulse response functions of
the nonlinear model

• How to proceed?
• calculate IRF for interesting initial condition (e.g., boom &
recession)

• simulate time series {kt}T
t=1 and calculate IRF at each point

• IRF becomes a band

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Properties perturbation solutions

1 Impact uncertainty on policy function

2 Accuracy as a global approximation

3 Preserving shape & stability with higher-order approximations

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Perturbation and impact of uncertainty

• Let σ be a parameter that scales all innovation standard
deviations

• σ = 0 =⇒ no uncertainty at all

• 1st-order: σ has no effect on policy rule at all

• certainty equivalence

• 2nd-order: σ only affects the constant
• 3rd-order: σ only affects constant and linear terms

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Perturbation and impact of uncertainty

Consequences for returns and risk premia:

• 1st-order: returns not affected by σ
=⇒ no risk premium

• 2nd-order: σ only shifts returns
=⇒ no time-varying risk premium

• 3rd-order: lowest possible order to get any time variation in
returns

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Theory

• Local convergence is guaranteed
• Global approximation could be good
• If the function is analytical =⇒ successive approximations
converge towards the truth

• Theory says nothing about convergence patterns
• Theory doesn’t say whether second-order is better than first
• For complex functions, this is what you have to worry about

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Example with simple Taylor expansion

Truth:

f (x) = −690.59+ 3202.4x− 5739.45x2

+4954.2x3 − 2053.6x4 + 327.10x5

defined on [0.7, 2]

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

0.8 1 1.2 1.4 1.6 1.8 2
10

5

0

5

10
truth and level approximation of order: 1

0.8 1 1.2 1.4 1.6 1.8 2

0

20

40

60

80

100
truth and level approximation of order: 2

Figure: Level approximations

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

0.8 1 1.2 1.4 1.6 1.8 2

0

50

100
truth and level approximation of order: 3

0.8 1 1.2 1.4 1.6 1.8 2

300

200

100

0
truth and level approximation of order: 4

0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
truth and level approximation of order: 5

Figure: Level approximations continued

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Approximation in log levels

Think of f (x) as a function of z = log(x). Thus,

f (x) = −690.59+ 3202.4 exp(z)− 5739.45 exp(2z)
+4954.2 exp(3z)− 2053.6 exp(4z) + 327.10 exp(5z).

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
truth and log level approximation of order: 1

0.8 1 1.2 1.4 1.6 1.8 2

0

50

100
truth and log level approximation of order: 3

0.8 1 1.2 1.4 1.6 1.8 2
100

50

0

truth and log level approximation of order: 5

Figure: Log level approximations

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

0.8 1 1.2 1.4 1.6 1.8 2
100

50

0

truth and log level approximation of order: 7

0.8 1 1.2 1.4 1.6 1.8 2
20

10

0

10

truth and log level approximation of order: 9

0.8 1 1.2 1.4 1.6 1.8 2
10

0

10
truth and log level approximation of order: 12

Figure: Log level approximations continued

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

ln(x) & Taylor series expansions at x = 1

1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

ln(x)

1st

2nd

5th

25th

ln(x) 1st 2nd 5th 25th

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Problems with preserving shape

• nonlinear higher-order polynomials always have "weird" shapes
• weirdness may occur close to or far away from steady state
• thus also in the standard growth model

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Standard growth model and odd shapes
due to perturbation (log utility)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.16

0.18

0.2

0.22

0.24

0.26

2nd-order

45 degree

truth

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Standard growth model and odd shapes
due to perturbation (log utility)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

0.16

0.18

0.2

0.22

0.24

0.26

45 degree

truth

3rd-order

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Problems with stability

h(x) = α0 + x+ α1e−α2x

x+1 = h(x) + shock+1

• Unique globally stable fixed point

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Perturbation approximation & stability

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

x

2nd

true value 2nd 45-degree

 x*

x**

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

How to calculate a simulated data set
Dynare gives you

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,εεt

• Start at k0 = k̄ and z0 = z̄ (= 0)
• Use a random number generator to get a series for εt for t = 1
to t = T

• Calculate time path for zt

• Calculate time path for kt

• Calculate time path for other variables
• Discard an initial set of observations
• Same procedure works for higher-order case

• except this one could explode

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Simulate higher-order & pruning

• first-order solutions are by construction stationary
• simulation cannot be problematic

• simulation of higher-order can be problematic
• simulation of 2nd-order will be problematic for large shocks
• pruning:

• ensures stability
• solution used is no longer a policy function

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Simulate higher-order & pruning

• pruning:
• ensures stability
• solution used is no longer a policy function of the original state
variables

• also changes the time path if it is not explosive
• makes it possible to calculate moments analytically (see
Andreasen, Fernandez-Villaverde, and Rubio-Ramirez 2014)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Pruning

• k(n)(k−1, z): the nth-order perturbation solution for k as a
function of k−1 and z.

• k(n)t : the value of kt generated with k(n)(·).

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Pruning for second-order perturbation

• The regular perturbation solution k(2) can be written as

k(2)t − kss

=

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+ k̃(2)(k(2)t−1, zt)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Pruning for second-order perturbation

With pruning one would simulate two series k(1)t and k(2)t

k(1)t − kss = a(1)k

(
k(1)t−1 − kss

)
+ a(1)z (zt − zss)

k(2)t − kss =

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+k̃(2)(k(1)t−1, zt)

• solution used is k(2)t

• k(2)t is not a function of zt and k(2)t−1, but a function of three
state variables!!!

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Figure: 2nd-order pruned perturbation approximation for neoclassical
growth model; k(2)t − k(2)t−1 as a "function" of k(2)t−1

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Pruning for second-order perturbation

k(2)t − kss =

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+k̃(2)(k(1)t−1, zt)

• k(1)t is stationary as long as BK conditions are satisfied

• k̃(2)(k(1)t−1, zt) is then also stationary

•
∣∣∣a(2)1

∣∣∣ < 1 then ensures that k(2)t is stationary

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Third-order pruning

• k̃(3)(kt−1, zt): part of k(3) with second-order terms

• ˜̃k(3)(kt−1, zt): part of k(3) with third-order terms

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

k(2)t is generated as above

k(3)t − kss =

a(3) + a(3)k

(
k(3)t−1 − kss

)
+ a(3)z (zt − zss)

+k̃(3)(k(2)t−1, zt) +
˜̃k(3)(k(2)t−1, zt)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Practical

• Dynare expects files to be in a regular path like e:\... and
cannot deal with subdirectories like //few.eur.nl/.../...

• The solution is to put your *.mod files on a memory stick

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Practical

• Dynare creates a lot of files
• To delete all those run the gonzo.m function.
• In particular:

• copy gonzo.m in current directory (or directory that is part of
your path)

• if your dynare file is called modela.mod use (in command
window or in file)

gonzo(’modela’)

Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

References
• of course: www.dynare.org
• Andreasen, M.M. J. Fernandez-Villaverde, and J.F.
Rubio-Ramirez, 2014, The pruned state-space system for
non-linear DSGE models.

• Griffoli, T.M., Dynare user guide
• Den Haan, W.J., Perturbation techniques,

• Relatively simple exposition of the theory and relation with
(modified) LQ.

• Den Haan, W.J., and J. de Wind, Nonlinear and stable
perturbation-based approximations equilibrium models
• discussion of the problems of pruning

• Lombardo, G., Approximating DSGE Models by series
expansions
• derivation of the pruning solution as a perturbation solution

	Introduction
	Within Matlab programs
	IRFs & Simulations
	Properties perturbation solutions

