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Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Introduction

• What is the objective of perturbation?
• Peculiarities of Dynare & some examples
• Incorporating Dynare in other Matlab programs
• Impulse Response Functions
• Local and/or global approximation?
• Perturbation and the effect of uncertainty on the solution
• Pruning
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Objective of 1st-order perturbation

• Obtain linear approximations to the policy functions that satisfy
the first-order conditions

• state variables: xt = [x1,t x2,t x3,t · · · xn,t]′

• result:
yt = ȳ+ (xt − x̄)′a

• a bar above a variable indicates steady state value
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Underlying theory

• Model:
Et [f (g(x))] = 0,

• f (x) is completely known
• g(x) is the unknown policy function.

• Perturbation: Solve sequentially for the coeffi cients of the
Taylor expansion of g(x).
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Neoclassical growth model

• xt = [kt−1, zt]

• yt = [ct, kt, zt]

• linearized solution:

ct = c̄+ ac,k(kt−1 − k̄) + ac,z(zt − z̄)
kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
zt = ρzt−1 + εt
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Linear in what variables?

• Dynare does not understand what ct is.

• could be level of consumption
• could be log of consumption
• could be rainfall in Scotland

• Dynare simply generates a linear solution in what you specify
as the variables

• More on this below
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Peculiarities of Dynare

• Variables known at beginning of period t must be dated t− 1.

• Thus,
• kt: the capital stock chosen in period t
• kt−1: the capital stock available at beginning of period t
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Peculiarities of Dynare

kt = k̄+ ak,k(kt−1 − k̄) + ak,z(zt − z̄)
zt = ρzt−1 + εt

can of course be written (less conveniently) as

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,zεt
zt = ρzt−1 + εt

with
ak,z−1 = ρak,z
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Peculiarities of Dynare

• Dynare gives the solution in the less convenient form:

ct = c̄+ ac,k(kt−1 − k̄) + ac,z−1(zt−1 − z̄) + ac,zεt
kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,zεt

zt = ρzt−1 + εt

• But you can rewrite it in the more convenient shorter form
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Dynare program blocks

• Labeling block: indicate which symbols indicate what
• variables in "var"
• exogenous shocks in "varexo"
• parameters in "parameters"

• Parameter values block: Assign values to parameters
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Dynare program blocks

• Model block: Between "model" and "end" write down the n
equations for n variables
• the equations have conditional expectations, having a (+1)
variable makes Dynare understand there is one in this equation
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Dynare program blocks

• Initialization block: Dynare has to solve for the steady state.
This can be the most diffi cult part (since it is a true non-linear
problem). So good initial conditions are important

• Random shock block: Indicate the standard deviation for the
exogenous innovation
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Dynare program blocks

• Solution & Properties block:
• Solve the model with the command

• 1st-order: stoch_simul(order=1,nocorr,nomoments,IRF=0)
• 2nd-order: stoch_simul(order=2,nocorr,nomoments,IRF=0)

• Dynare can calculate IRFs and business cycle statistics. E.g.,
• stoch_simul(order=1,IRF=30),
• but I would suggest to program this yourself (see below)
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Running Dynare

• In Matlab change the directory to the one in which you have
your *.mod files

• In the Matlab command window type

dynare programname

or

dynare programname.mod

• This will create and run several Matlab files
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Model with productivity in levels (FOCs A)

Specification of the problem

max{ct,kt}∞
t=1

E ∑∞
t=1 βt−1 c1−ν

t −1
1−ν

s.t.
ct + kt = ztkα

t−1 + (1− δ)kt−1
zt = (1− ρ) + ρzt−1 + εt

k0 given
Et[εt+1] = 0 & Et[ε2

t+1] = σ2



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Distribution of innovation

• 1st-order approximations:
• solution assumes that Et[εt+1] = 0
• other properties of the distribution do not matter

• 2nd-order approximations:
• solution assumes that Et[εt+1] = 0
• σ matters, it affects the constant of the policy function
• other properties of the distribution do not matter
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Everything in levels: FOCs A

Model equations:

c−ν
t = Et

[
βc−ν

t+1(αzt+1kα−1
t + 1− δ)

]
ct + kt = ztkα

t−1 + (1− δ)kt−1

zt = (1− ρ) + ρzt−1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*z(+1)*k^(alpha-1)+1-delta);
c+k=z*k(-1)^alpha+(1-delta)k(-1);
z=(1-rho)+rho*z(-1)+e;
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Policy functions reported by Dynare

• δ = 0.025, ν = 2, α = 0.36, β = 0.99, and ρ = 0.95

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968
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!!!! You have to read output as

k z c
constant 37.989254 1.000000 2.754327
k(-1)-kss 0.976540 -0.000000 0.033561
z(-1)-zss 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

• That is, explanatory variables are relative to steady state.
• (Note that steady state of e is zero by definition)
• If explanatory variables take on steady state values, then
choices are equal to the constant term, which of course is
simply equal to the corresponding steady state value
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Changing amount of uncertainty

Suppose σ = 0.1 instead of 0.007

POLICY AND TRANSITION FUNCTIONS

k z c
constant 37.989254 1.000000 2.754327
k(-1) 0.976540 -0.000000 0.033561
z(-1) 2.597386 0.950000 0.921470
e 2.734091 1.000000 0.969968

• Any change?
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Model with productivity in logs

Specification of the problem

max
{ct,kt}∞

t=1

E
∞

∑
t=1

βt−1 c1−ν
t − 1
1− ν

s.t.

ct + kt = exp(zt)kα
t−1 + (1− δ)kt−1

zt = ρzt−1 + εt

k0 given, Et[εt+1] = 0
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Variables in levels & prod. in logs - FOCs B

Model equations:

c−ν
t = Et

[
βc−ν

t+1(α exp(zt+1)kα−1
t + 1− δ)

]
ct + kt = exp(zt)kα

t−1 + (1− δ)kt−1
zt = ρzt−1 + εt

Dynare equations:
c^(-nu)
=beta*c(+1)^(-nu)*(alpha*exp(z(+1))*k^(alpha-1)+1-delta);
c+k=exp(lz)*k(-1)^alpha+(1-delta)k(-1);
lz=rho*lz(-1)+e;
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Linear solution in what?

Dynare gives a linear system in what you specify the variables to be
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Variables in logs - FOCs C

Model equations:

(exp(c̃t))
−ν =

= Et

[
β(exp(c̃t+1))

−ν(α exp(zt+1)(exp(k̃t))
α−1 + 1− δ)

]
exp(c̃t) + exp(k̃t) = exp(zt)(exp(k̃t−1))

α + (1− δ) exp(k̃t−1)

zt = ρzt−1 + εt

The variables c̃t and k̃t are the log of consumption and capital.
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All variables in logs - FOCs C

Model equations (rewritten a bit)

exp(−νc̃t)

= Et
[
β exp(−νc̃t+1)(α exp(zt+1 + (α− 1)k̃t) + 1− δ)

]
exp(c̃t) + exp(k̃t) = exp(zt + αk̃t−1) + (1− δ) exp(k̃t−1)

zt = ρzt−1 + εt
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All variables in logs - FOCs C

Dynare equations:

exp(-nu*lc)=beta*exp(-nu*lc(+1))*
(alpha*exp(lz(+1)+(alpha-1)*lk))+1-delta);

exp(lc)+exp(lk)
=exp(lz+alpha*lk(-1))+(1-delta)exp(lk(-1));

lz=rho*lz(-1)+e;
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All variables in logs - FOCs C

• This system gives policy functions that are linear in the
variables lc, i.e., ln(ct), lk,i.e., ln(kt), and lz, i.e., ln(zt)

• Note that we could have found the coeffi cients of the log
system without rerunning Dynare.
To understand consider the following:

1 How would coeffi cients change if we use (ct − css)/css instead
of ct as variable?

2 How would they change if we use ln (ct) instead of
(ct − css)/css?
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All variables in logs - FOCs C

Is the following system any different?

exp(-nu*c)=beta*exp(-nu*c(+1))*
(alpha*exp(z(+1)+(alpha-1)*k))+1-delta);

exp(c)+exp(k)=exp(z+alpha*k(-1))+(1-delta)exp(k(-1));

z=rho*z(-1)+e;
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Example with analytical solution

• If δ = ν = 1 then we know the analytical solution. It is

kt = αβ exp(zt)ka
t−1

ct = (1− αβ) exp(zt)ka
t−1

or

ln kt = ln(αβ) + α ln kt−1 + zt

ln ct = ln(1− αβ) + α ln kt−1 + zt
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Are linear and loglinear the same?
Suppose that k0 = 0.798 & zt = 0 ∀t. Then the two time paths are
given by
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Substitute out consumption- FOCs D

Model equations:

[
zt exp(αk̃t−1) + (1− δ) exp(k̃t−1)− exp(k̃t)

]−ν

=

Et

{
β

( [
exp(zt+1 + αk̃t) + (1− δ) exp(k̃t)− exp(k̃t+1)

]−ν×
(α exp(zt+1 + (α− 1)k̃t) + 1− δ)

)}

zt = ρzt−1 + εt

Does this substitution affect the solution?



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Do it yourself!

• Try to do as much yourself as possible
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What (not) to do your self

• Find the policy functions:
• can be quite tricky, so let Dynare do it.

• IRFs, business cycle statistics, etc:
• easy to program yourself
• you know exactly what you are getting



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Why do things yourself?

• Dynare linearizes everything
• Suppose you have an approximation in levels
• Add the following equation to introduce output

yt = ztkα
t h1−α

t

• Dynare will take a first-order condition of this equation to get a
first-order approximation for yt

• But you already have solutions for kt and ht
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Why do things yourself?

• Getting the policy rules requires a bit of programming
=⇒ let Dynare do this for you

• But, program more yourself =⇒ you understand more
• Thus program yourself the simpler things:

• IRFs, simulated time paths, business cycle statistics, etc
• That is, use stoch_simul(order=1,nocorr,nomoments,IRF=0)
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Tricks

• Incorporating Dynare in other Matlab programs
• Read parameter values in *.mod file from external file
• Read Dynare policy functions as they appear on the screen
• How to get good initial conditions to solve for steady state
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Keeping variables in memory

• Dynare clears all variables out of memory
• To overrule this, use

dynare program.mod noclearall
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Saving solution to a file

• Replace the file "disp_dr.m" with alternatives available on my
website

• I made two changes:
• The original Dynare file only writes a coeffi cient to the screen
if it exceeds 10-6 in absolute value. I eliminated this condition

• I save the policy functions, exactly the way Dynare now writes
them to the screen

To load the policy rules into a matrix called "decision" simply type

load dynarerocks
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Loops

• The last trick allows you to run the same dynare program for
different parameter values

• Suppose your Dynare program has the command

nu=3;

• You would like to run the program twice; once for nu=3, and
once for nu=5.
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Loops

1 In your Matlab program, loop over the different values of nu.
Save the value of nu and the associated name to the file
"parameterfile":

save parameterfile nu

and then run Dynare

2 In your Dynare program file, replace the command "nu = 3"
with

load parameterfile

set_param_value(’nu’,nu);
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This does the same

1 Loop over eta instead of nu

save hangten eta

2 In your *.mod file
load hangten

set_param_value(’nu’,eta);

• the name of the file is abitrary
• in set_param_value(’·’,·), the first argument is the name in
your *.mod file and the second is the numerical vlaue
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Homotophy

• Hardest part of Dynare is to solve for steady state
• Homotophy makes this a lot easier
• Suppose you want to the x such that

f (x; α1) = 0

and suppose that you know the solution for α0

• Consider
f (x; ωα1 + (1−ω)α0) = 0
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Homotophy

•
f (x; ωα1 + (1−ω)α0) = 0

• Set ω to a small value
• Solve for x using solution for α0 as initial condition
• Increase ω slightly
• Solve for x using the latest solution for x as initial condition
• Continue until ω = 1
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Homotophy

You could even use

•
ωf (x; α1) + (1−ω) g(x; α0) = 0

as your homotophy system
• Works best is f (x; α1) is close to g(x; α0)
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Using loop to get good initial conditions

With a loop you can update the initial conditions used to solve for
steady state

1 Use parameters to define initial conditions

2 Solve model for simpler case

3 Gradually change parameter

4 Alternatives:

1 use different algorithm to solve for steady state:
solve_algo=1,2, or 3

2 solve for coeffi cients instead of variables
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Simple model with endogenous labor

1 Solve for c, k, h using

1 = β(α (k/h)α−1 + 1− δ)
c+ k = kαh1−α + (1− δ)k
c−ν(1− α)(k/h)α = φhκ

φ = 1

2 Or solve for c, k, φ using

1 = β(α (k/h)α−1 + 1− δ)
c+ k = kαh1−α + (1− δ)k
c−ν(1− α)(k/h)α = φhκ

h = 0.3
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Impulse Response functions

Definition: The effect of a one-standard-deviation shock

• Take as given k0, z0, and time series for εt, {εt}T
t=1

• Let {kt}T
t=1 be the corresponding solutions
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Impulse Response functions

• Consider the time series ε∗t such that

ε∗t = εt for t 6= τ
ε∗t = εt + σ for t = τ

• Let {k∗t }T
t=1 be the corresponding solutions

• Impulse response functions are calculated as

IRFk
j = k∗τ+j − kτ+j for j ≥ 0 if k is in logs

IRFk
j =

k∗τ+j − kτ+j

kτ+j
for j ≥ 0 if k is in levels
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Impulse Response functions

• Consider the time series ε∗t such that

ε∗t = εt for t 6= τ
ε∗t = εt + σ for t = τ

• Let {k∗t }T
t=1 be the corresponding solutions

• Impulse response functions are calculated as

IRFk
j (σ) = k∗τ+j − kτ+j for j ≥ 0
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IRFs in general

• In general, IRFs will depend on
• State of the economy when the shock occurs

• thus depends on {εt}τ
t=1

• Future shocks
• thus depends on {εt}∞

t=τ+1

• In general, IRFk
j (σ) /σ depends on sign and size of σ
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IRFs in linear models

• In linear models, IRFs do not depend on
• State of the economy when the shock occurs
• Future shocks

• In linear modles, IRFk
j (σ) /σ does not depend on sign and

size of σ

=⇒ You are free to pick the conditions anyway you want (including
the easiest ones)
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IRFs in linear models

Dynare gives you

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,εεt

Easiest conditions:

• Start at k0 = k̄ and z0 = z̄ (= 0)
• Let ε1 = σε and εt = 0 for t > 1
• Calculate time path for zt

• Calculate time path for kt

• Calculate time path for other variables
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Impulse Response functions

higher-order case:

• One could repeat procedure described in last slide
• But this is just one of the many impulse response functions of
the nonlinear model

• How to proceed?
• calculate IRF for interesting initial condition (e.g., boom &
recession)

• simulate time series {kt}T
t=1 and calculate IRF at each point

• IRF becomes a band



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Properties perturbation solutions

1 Impact uncertainty on policy function

2 Accuracy as a global approximation

3 Preserving shape & stability with higher-order approximations
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Perturbation and impact of uncertainty

• Let σ be a parameter that scales all innovation standard
deviations

• σ = 0 =⇒ no uncertainty at all

• 1st-order: σ has no effect on policy rule at all

• certainty equivalence

• 2nd-order: σ only affects the constant
• 3rd-order: σ only affects constant and linear terms
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Perturbation and impact of uncertainty

Consequences for returns and risk premia:

• 1st-order: returns not affected by σ
=⇒ no risk premium

• 2nd-order: σ only shifts returns
=⇒ no time-varying risk premium

• 3rd-order: lowest possible order to get any time variation in
returns
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Theory

• Local convergence is guaranteed
• Global approximation could be good
• If the function is analytical =⇒ successive approximations
converge towards the truth

• Theory says nothing about convergence patterns
• Theory doesn’t say whether second-order is better than first
• For complex functions, this is what you have to worry about
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Example with simple Taylor expansion

Truth:

f (x) = −690.59+ 3202.4x− 5739.45x2

+4954.2x3 − 2053.6x4 + 327.10x5

defined on [0.7, 2]
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Approximation in log levels

Think of f (x) as a function of z = log(x). Thus,

f (x) = −690.59+ 3202.4 exp(z)− 5739.45 exp(2z)
+4954.2 exp(3z)− 2053.6 exp(4z) + 327.10 exp(5z).
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ln(x) & Taylor series expansions at x = 1
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Problems with preserving shape

• nonlinear higher-order polynomials always have "weird" shapes
• weirdness may occur close to or far away from steady state
• thus also in the standard growth model
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Standard growth model and odd shapes
due to perturbation (log utility)
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Standard growth model and odd shapes
due to perturbation (log utility)
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Problems with stability

h(x) = α0 + x+ α1e−α2x

x+1 = h(x) + shock+1

• Unique globally stable fixed point
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Perturbation approximation & stability
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How to calculate a simulated data set
Dynare gives you

kt = k̄+ ak,k(kt−1 − k̄) + ak,z−1(zt−1 − z̄) + ak,εεt

• Start at k0 = k̄ and z0 = z̄ (= 0)
• Use a random number generator to get a series for εt for t = 1
to t = T

• Calculate time path for zt

• Calculate time path for kt

• Calculate time path for other variables
• Discard an initial set of observations
• Same procedure works for higher-order case

• except this one could explode
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Simulate higher-order & pruning

• first-order solutions are by construction stationary
• simulation cannot be problematic

• simulation of higher-order can be problematic
• simulation of 2nd-order will be problematic for large shocks
• pruning:

• ensures stability
• solution used is no longer a policy function
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Simulate higher-order & pruning

• pruning:
• ensures stability
• solution used is no longer a policy function of the original state
variables

• also changes the time path if it is not explosive
• makes it possible to calculate moments analytically (see
Andreasen, Fernandez-Villaverde, and Rubio-Ramirez 2014)
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Pruning

• k(n)(k−1, z): the nth-order perturbation solution for k as a
function of k−1 and z.

• k(n)t : the value of kt generated with k(n)(·).



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Pruning for second-order perturbation

• The regular perturbation solution k(2) can be written as

k(2)t − kss

=

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+ k̃(2)(k(2)t−1, zt)
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Pruning for second-order perturbation

With pruning one would simulate two series k(1)t and k(2)t

k(1)t − kss = a(1)k

(
k(1)t−1 − kss

)
+ a(1)z (zt − zss)

k(2)t − kss =

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+k̃(2)(k(1)t−1, zt)

• solution used is k(2)t

• k(2)t is not a function of zt and k(2)t−1, but a function of three
state variables!!!
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Figure: 2nd-order pruned perturbation approximation for neoclassical
growth model; k(2)t − k(2)t−1 as a "function" of k(2)t−1
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Pruning for second-order perturbation

k(2)t − kss =

a(2) + a(2)k

(
k(2)t−1 − kss

)
+ a(2)z (zt − zss)

+k̃(2)(k(1)t−1, zt)

• k(1)t is stationary as long as BK conditions are satisfied

• k̃(2)(k(1)t−1, zt) is then also stationary

•
∣∣∣a(2)1

∣∣∣ < 1 then ensures that k(2)t is stationary
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Third-order pruning

• k̃(3)(kt−1, zt): part of k(3) with second-order terms

• ˜̃k(3)(kt−1, zt): part of k(3) with third-order terms
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k(2)t is generated as above

k(3)t − kss =

a(3) + a(3)k

(
k(3)t−1 − kss

)
+ a(3)z (zt − zss)

+k̃(3)(k(2)t−1, zt) +
˜̃k(3)(k(2)t−1, zt)
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Practical

• Dynare expects files to be in a regular path like e:\... and
cannot deal with subdirectories like //few.eur.nl/.../...

• The solution is to put your *.mod files on a memory stick



Introduction Within Matlab programs IRFs & Simulations Properties perturbation solutions

Practical

• Dynare creates a lot of files
• To delete all those run the gonzo.m function.
• In particular:

• copy gonzo.m in current directory (or directory that is part of
your path)

• if your dynare file is called modela.mod use (in command
window or in file)

gonzo(’modela’)
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