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Time-Varying VARs

• Gibbs-Sampler
• general idea
• probit regression application

• (Inverted) Wishart distribution
• Drawing from a multi-variate Normal in Matlab
• Time-varying VAR

• model specification
• Gibbs sampler
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Gibbs Sampler

Suppose

• x, y, and z are distributed according to f (x, y, z)

• Suppose that drawing x, y, and z from f (x, y, z) is diffi cult

• but
you can draw x from f (x|y, z) and
you can draw y from f (y|x, z) and
you can draw y from f (z|x, y)
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Gibbs Sampler - how it works

• Start with y0, z0

• Draw x1 from f (x|y0, z0),
• Draw y1 from f (y|x1, z0),
• Draw z1 from f (z|x1, y1),
• Draw x2 from f (x|y1, z1)

• (xi, yi, zi) is one draw from the joint density f (x, y, z)
• Although series are constructed recursively, they are not time
series
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Gibbs Sampler - convergence

• The idea is that this sequence converges to a sequence drawn
from f (x, y, z) .

• Since convergence is not immediate, you have to discard
beginning of sequence (burn-in period).

• See Casella and George (1992) for a discussion on why and
when this works.
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Gibbs Sampler - probit regression

This example is from Lancaster (2004)

• yi is the ith observation of a binary variable, i.e., yi ∈ {0, 1}

• y∗i is an unobservable and given by

y∗i = xiβ+ εi, εi ∼ N(0, 1)

•
y =

{
1 if y∗i ≥ 0
0 o.w.
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Probit regression

• Parameters: β and y∗ = [y∗1 , y∗2 , · · · , y∗n]′

• Data: X = [x1, x2, · · · , xn]′, Y = {yi, xi}n
i=1

• Objective: get p
(

β̂|Y
)
, i.e., the distribution of β̂ given Y.

• With the Gibbs sample we can get a sequence of obervations
for
(

β̂, y∗̂
)
distributed according to p

(
β̂, ŷ∗|Y

)
, from which

we can get p
(

β̂|Y
)
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Probit - Gibb sampler step 1

We need to draw from p
(

β̂|y∗, Y
)

• Given y∗ and X

β̂ ∼ N
((

X′X
)−1 X′y∗,

(
X′X

)−1
)

,

since the standard deviation of εi is known and equal to 1.
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Probit - Gibb sampler step 2

We need to draw from p (y∗|β, Y)

• Since the yis are independent, we can do this separately for
each i

y∗i ∼ N>0 (xiβ, 1) if yi = 1
y∗i ∼ N<0 (xiβ, 1) if yi = 0 ,

where
N>0 (·) is a Normal distribution truncated on the left at 0
N<0 (·) is a Normal distribution truncated on the right at 0
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Wishart distribution

• generalization of Chi-square distribution to more variables

• X : n× p matrix; each row drawn from Np (0, Σ), where Σ is
the p× p variance-covariance matrix

• W = X′X ∼ Wp (Σ, n), i.e., the p-dimensional Wishart with
scale matrix Σ and degrees of freedom n

• You get the Chi-square if p = 1 and Σ = 1
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Inverse Wishart distribution

• If W has a Wishart distribution with parameters Σ and n, then
W−1 has an inverse Wishart with scale matrix Σ−1 and degrees
of freedom n

• !!! In the assignment, the input of the Matlab Inverse Wishart
function is Σ not Σ−1.
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Inverse Wishart in Bayesian statistics
• Data: xt is a p× 1 vector with i.i.d. random observations with
distribution N (0, V)

• prior of V :
p (V) = IW

(
V−1, n

)

• posterior of V :

p
(

V|XT
)
= IW

(
W−1, n+ T

)
W = V+ V̂T

V̂T =
T

∑
t=1

x′txt

Note that V̂T is like a sum of squares
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Multivariate normal in Matlab

• xt is a p× 1 vector and we want xt ∼ N(0, Σ)

• C=chol(Σ)
Thus C is an upper-triangular matrix and C′C = Σ

• et is a p× 1 vector with draws from N(0, Ip)

E
[
C′ete′tC

]
= Σ

• Thus, C′et is a p× 1 vector with draws from N(0, Σ)
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Time-varying VARs - intro

• Idea: capture changes in model specification in a flexible way

• The analysis here is based on Cogley and Sargent (2002), CS
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Model specification

yt = X′tθt + εt

X′t =
[
1, yt−1, yt−2, · · · , yt−p

]
θt = θt−1 + vt

εt ∼ N(0, R)
vt ∼ N(0, Q)
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Model specification

Et

[
εt
vt

] [
εt vt

]
= V =

(
R C′

C Q

)
• θt : "parameters"
• R, C, and Q are the "hyperparameters"
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Model specification - details

Simplifying assumptions:

• CS impose that θt is such that yt would be stationary if
θt+τ = θt for all τ ≥ 0. This stationarity requirement is left out
for transparency.

• C = 0.
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Notation

YT =
[
y′1, · · · , y′T

]
θT =

[
θ′0, θ′1, · · · , θ′T

]
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Priors

• Prior for initial condition:

θ0 ∼ N
(
θ, P
)

• Prior for hyperparameters:

p(V) = IW
(

V−1, T0

)

• θ, P, V, T0 are taken as given
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Posterior

• The posterior is given by

p
(

θT, V|YT
)

• We can use the Gibbs sampler if we can draw from

P
(

θT|YT, V
)

and from
P
(

V|YT, θT
)
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Stationarity

• CS exclude draws of θt for which the dgp of yt is nonstationary:

• p (θt|·) is density without imposing stationarity and
• f (θt|·) is density with imposing stationarity

• This restriction is ignored in these slides
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Gibbs part I: Posterior of theta given V
• Since f (A, B) = f (A|B)× f (B), we have

p
(

θT|YT, V
)
= f

(
θT|YT, V

)
= f

(
θT−1|θT, YT, V

)
× f

(
θT|YT, V

)
= f

(
θT−2|θT, θT−1, YT, V

)
× f

(
θT−1|θT, YT, V

)
×f
(

θT|YT, V
)

= f
(

θT−3|θT, θT−1, θT−2, YT, V
)
× f

(
θt−2|θT, θT−1, YT, V

)
×f
(

θT−1|θT, YT, V
)
× f

(
θT|YT, V

)
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Posterior of theta given V

• Since
θt = θt−1 + vt,

θt+τ has no predictive power for θt−1 for all τ ≥ 1 given YT

and θt,
• Thus

f
(

θT−2|θT, θT−1, YT, V
)
= f

(
θT−2|θT−1, YT, V

)
f
(

θT−3|θT, θT−1, θT−2, YT, V
)
= f

(
θT−3|θT−2, YT, V

)
etc.
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Posterior of theta given V

• Combining gives

p
(

θT|YT, V
)
= f

(
θT|YT, V

) T−1

∏
t=1

f
(

θt|θt+1, YT, V
)

• All the densities are Gaussian =⇒ if we know the means and
the variances, then we can draw from p

(
θT|YT, V

)
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Posterior of theta given V
We need to find the means and variances of

f
(

θT|YT, V
)

& f
(

θt|θt+1, YT, V
)

Notation

θt|t = E
(
θt|Yt, V

)
Pt|t−1 = VAR

(
θt|Yt−1, V

)
Pt|t = VAR

(
θt|Yt, V

)
θt|t+1 = E

(
θt|θt+1, Yt, V

)
= E

(
θt|θt+1, YT, V

)
Pt|t+1 = VAR

(
θt|θt+1, Yt, V

)
= VAR

(
θt|θt+1, YT, V

)
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Posterior of theta given V

• First, use Kalman filter to go forward
• start with θ0 and P0|0

• Next, go backwards to get draws for θt given θt+1
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Posterior of theta given V
• Kalman filter part:

yt = X′tθt + εt

X′t =
[
1, yt−1, yt−2, · · · , yt−p

]
θt = θt−1 + vt

εt ∼ N(0, R)
vt ∼ N(0, Q)

• Here:
• the p+ 1 elements of Xt are the known (time-varying)
coeffi cients of the state-space represenation

• the elements of θt are the unobserved underlying state variables
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Posterior of theta given V
• Kalman filter in the first period:

P1|0 = P0|0 +Q

K1 = P1|0X1

(
X′1P1|0X1 + R

)−1

θ1|1 = θ0|0 + K1

(
y1 −X′1θ0|0

)
• and then iterate

Pt|t−1 = Pt−1|t−1 +Q

Kt = Pt|t−1Xt

(
X′tPt|t−1Xt + R

)−1

θt|t = θt−1|t−1 + Kt

(
yt −X′tθt−1|t−1

)
Pt|t = Pt|t−1 − KtX′tPt|t−1
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Posterior of theta given V

• In the Kalman filter part of the assignment:

TH(:,1) = θ0

TH(:,t+1) = θt|t
Pe(:,:,t) = Pt−1|t−1

Po(:,:,t) = Pt|t−1

• and we go up to

TH(:,T+1) = θT|T
Pe(:,:,T+1) = PT|T
Po(:,:,T) = PT|T−1
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Posterior of theta given V

• Distribution terminal state:

f
(

θT|YT, V
)
= N

(
θT|T, PT|T

)

• From this we get a draw θT
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Posterior of theta given V
• Draws for θT−1, θT−2, · · · , θ1 are obtained recursively from

f
(

θt|θt+1, YT, V
)
= N

(
θt|t+1, Pt|t+1

)
θt|t+1 = θt|t + Pt|tP

−1
t+1|t

(
θt+1 − θt|t

)
Pt|t+1 = Pt|t − Pt|tP

−1
t+1|tPt|t

• The terms needed to calculate θt|t+1 and Pt|t+1 are generated
by the Kalman filter (that is, from going forward) and the
standard projection formulas (and note that the covariance of
θt+1 and θt is the variance of θt)
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Details for previous slide

E [y|x] = µy + ΣyxΣ−1
xx (x− µx)

=⇒
E [θt|θt+1; ·] = E [θt|·] + Σθtθt+1Σ−1

θt+1θt+1
(θt+1 −E [θt+1|·])

= E [θt|·] + ΣθtθtΣ
−1
θt+1θt+1

(θt+1 −E [θt+1|·])
=⇒

θt|t+1 = θt|t + Pt|tP
−1
t+1|t (θt+1 −E [θt + vt|·])

= θt|t + Pt|tP
−1
t+1|t (θt+1 −E [θt|·])

= θt|t + Pt|tP
−1
t+1|t

(
θt+1 − θt|t

)
Suppressing the dependence on Yt and V to simplify notation
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Posterior of theta given V
In the backward part of the assignment:

Draw from TH(t-1|t)
In the for loop below t goes from high to low.
At a particular t:

1 TH(:,t+1) it is a random draw from a normal that
has already been determined (either in this loop
or for T above)

2 TH(:,t) on the RHS of the mean equation is equal
to theta_(t-1)|(t-1)

3 TH(:,t) what we end up with is a random draw for
theta(t-1) conditional on knowning theta in the
next period
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Why go forward & backward?

• The Kalman filter gives us E
(
θt|Yt, V

)
and VAR(θt|Yt, V)

• With this information, we can also obtain draws for θt

• However, we need draws from f
(

θT|YT, V
)
not from

f
(

θT|Yt, V
)
. The analysis above showed how to get draws

from f
(

θT|YT, V
)
recursively by going backward.
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Relation to Kalman Smoother

• The Kalman smoother also goes backwards and resembles the
procedure here.

• However, there is a difference.
• The Kalman smoother computes the mean and variance for

f
(
θt|YT, V

)
• We need the mean and variance for f

(
θt|θt+1, YT, V

)
• Since

f
(

θt|θt+1, YT, V
)
= f

(
θt|θt+1, Yt, V

)
,

we can calculate these from Kalman filter without using the
Kalman smoother
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Gibbs part II: Posterior of V given theta

• Next step is to draw from the posterior given YT and θT, that
is get a draw from p

(
V|YT, θT

)
• The posterior combines the prior and information from the data
=⇒ in each Gibbs iteration the prior is the same but the data
set (i.e., θT) is different
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Gibbs part II: Posterior of V given theta
• Given YT and θT, we can calcluate εt and νt.

• Both have mean zero and a Normal distribution

• Thus

p
(

V|YT, θT
)
= IW(V−1

1 , T1)

T1 = T0 + T
V1 = V+VT

VT =
T

∑
t=1

(
εt
vt

) (
ε′t v′t

)
!!! Note that V, VT, &V1 are like a sum of squares, whereas V
(and R&Q) are like a sum of squares divided by number of
observations (same notation as in CS)
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