Timevarying VARs

Wouter J. Den Haan
London School of Economics

(c) Wouter J. Den Haan

Time-Varying VARs

- Gibbs-Sampler
- general idea
- probit regression application
- (Inverted) Wishart distribution
- Drawing from a multi-variate Normal in Matlab
- Time-varying VAR
- model specification
- Gibbs sampler

Gibbs Sampler

Suppose

- x, y, and z are distributed according to $f(x, y, z)$
- Suppose that drawing x, y, and z from $f(x, y, z)$ is difficult
- but
you can draw x from $f(x \mid y, z)$ and you can draw y from $f(y \mid x, z)$ and you can draw y from $f(z \mid x, y)$

Gibbs Sampler - how it works

- Start with y_{0}, z_{0}
- Draw x_{1} from $f\left(x \mid y_{0}, z_{0}\right)$,
- Draw y_{1} from $f\left(y \mid x_{1}, z_{0}\right)$,
- Draw z_{1} from $f\left(z \mid x_{1}, y_{1}\right)$,
- Draw x_{2} from $f\left(x \mid y_{1}, z_{1}\right)$
- $\left(x_{i}, y_{i}, z_{i}\right)$ is one draw from the joint density $f(x, y, z)$
- Although series are constructed recursively, they are not time series

Gibbs Sampler - convergence

- The idea is that this sequence converges to a sequence drawn from $f(x, y, z)$.
- Since convergence is not immediate, you have to discard beginning of sequence (burn-in period).
- See Casella and George (1992) for a discussion on why and when this works.

Gibbs Sampler - probit regression

This example is from Lancaster (2004)

- y_{i} is the $i^{\text {th }}$ observation of a binary variable, i.e., $y_{i} \in\{0,1\}$
- y_{i}^{*} is an unobservable and given by

$$
\begin{gathered}
y_{i}^{*}=x_{i} \beta+\varepsilon_{i}, \quad \varepsilon_{i} \sim N(0,1) \\
y= \begin{cases}1 & \text { if } y_{i}^{*} \geq 0 \\
0 & \text { o.w. }\end{cases}
\end{gathered}
$$

Probit regression

- Parameters: β and $y^{*}=\left[y_{1}^{*}, y_{2}^{*}, \cdots, y_{n}^{*}\right]^{\prime}$
- Data: $X=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\prime}, Y=\left\{y_{i}, x_{i}\right\}_{i=1}^{n}$
- Objective: get $p(\widehat{\beta} \mid Y)$, i.e., the distribution of $\widehat{\beta}$ given Y.
- With the Gibbs sample we can get a sequence of obervations for $\left(\widehat{\beta}, y^{*}\right)$ distributed according to $p\left(\widehat{\beta}, \widehat{y}^{*} \mid Y\right)$, from which we can get $p(\widehat{\beta} \mid Y)$

Probit - Gibb sampler step 1

We need to draw from $p\left(\widehat{\beta} \mid y^{*}, Y\right)$

- Given y^{*} and X

$$
\widehat{\beta} \sim N\left(\left(X^{\prime} X\right)^{-1} X^{\prime} y^{*},\left(X^{\prime} X\right)^{-1}\right),
$$

since the standard deviation of ε_{i} is known and equal to 1 .

Probit - Gibb sampler step 2

We need to draw from $p\left(y^{*} \mid \beta, Y\right)$

- Since the y_{i} s are independent, we can do this separately for each i

$$
\begin{array}{ll}
y_{i}^{*} \sim N_{>0}\left(x_{i} \beta, 1\right) & \text { if } y_{i}=1 \\
y_{i}^{*} \sim N_{<0}\left(x_{i} \beta, 1\right) & \text { if } y_{i}=0
\end{array}
$$

where
$N_{>0}(\cdot)$ is a Normal distribution truncated on the left at 0 $N_{<0}(\cdot)$ is a Normal distribution truncated on the right at 0

Wishart distribution

- generalization of Chi-square distribution to more variables
- $X: n \times p$ matrix; each row drawn from $N_{p}(0, \Sigma)$, where Σ is the $p \times p$ variance-covariance matrix
- $W=X^{\prime} X \sim W_{p}(\Sigma, n)$, i.e., the p-dimensional Wishart with scale matrix Σ and degrees of freedom n
- You get the Chi-square if $p=1$ and $\Sigma=1$

Inverse Wishart distribution

- If W has a Wishart distribution with parameters Σ and n, then W^{-1} has an inverse Wishart with scale matrix Σ^{-1} and degrees of freedom n
- !!! In the assignment, the input of the Matlab Inverse Wishart function is Σ not Σ^{-1}.

Inverse Wishart in Bayesian statistics

- Data: x_{t} is a $p \times 1$ vector with i.i.d. random observations with distribution $N(0, V)$
- prior of V :

$$
p(V)=I W\left(\bar{V}^{-1}, n\right)
$$

- posterior of V :

$$
\begin{aligned}
p\left(V \mid X^{T}\right) & =I W\left(W^{-1}, n+T\right) \\
W & =\bar{V}+\widehat{V}_{T} \\
\widehat{V}_{T} & =\sum_{t=1}^{T} x_{t}^{\prime} x_{t}
\end{aligned}
$$

Note that \widehat{V}_{T} is like a sum of squares

Multivariate normal in Matlab

- x_{t} is a $p \times 1$ vector and we want $x_{t} \sim N(0, \Sigma)$
- $\mathrm{C}=\operatorname{chol}(\Sigma)$

Thus C is an upper-triangular matrix and $C^{\prime} C=\Sigma$

- e_{t} is a $p \times 1$ vector with draws from $N\left(0, I_{p}\right)$

$$
\mathbb{E}\left[C^{\prime} e_{t} e_{t}^{\prime} C\right]=\Sigma
$$

- Thus, $C^{\prime} e_{t}$ is a $p \times 1$ vector with draws from $N(0, \Sigma)$

Time-varying VARs - intro

- Idea: capture changes in model specification in a flexible way
- The analysis here is based on Cogley and Sargent (2002), CS

Model specification

$$
\begin{aligned}
y_{t} & =X_{t}^{\prime} \theta_{t}+\varepsilon_{t} \\
X_{t}^{\prime} & =\left[1, y_{t-1}, y_{t-2}, \cdots, y_{t-p}\right] \\
\theta_{t} & =\theta_{t-1}+v_{t} \\
\varepsilon_{t} & \sim N(0, R) \\
v_{t} & \sim N(0, Q)
\end{aligned}
$$

Model specification

$$
\mathbb{E}_{t}\left[\begin{array}{c}
\varepsilon_{t} \\
v_{t}
\end{array}\right]\left[\begin{array}{ll}
\varepsilon_{t} & v_{t}
\end{array}\right]=V=\left(\begin{array}{ll}
R & C^{\prime} \\
C & Q
\end{array}\right)
$$

- θ_{t} : "parameters"
- R, C, and Q are the "hyperparameters"

Model specification - details

Simplifying assumptions:

- CS impose that θ_{t} is such that y_{t} would be stationary if $\theta_{t+\tau}=\theta_{t}$ for all $\tau \geq 0$. This stationarity requirement is left out for transparency.
- $C=0$.

Notation

$$
\begin{aligned}
Y^{T} & =\left[y_{1}^{\prime}, \cdots, y_{T}^{\prime}\right] \\
\theta^{T} & =\left[\theta_{0}^{\prime}, \theta_{1}^{\prime}, \cdots, \theta_{T}^{\prime}\right]
\end{aligned}
$$

Priors

- Prior for initial condition:

$$
\theta_{0} \sim N(\bar{\theta}, \bar{P})
$$

- Prior for hyperparameters:

$$
p(V)=I W\left(\bar{V}^{-1}, T_{0}\right)
$$

- $\bar{\theta}, \bar{P}, \bar{V}, T_{0}$ are taken as given

Posterior

- The posterior is given by

$$
p\left(\theta^{T}, V \mid Y^{T}\right)
$$

- We can use the Gibbs sampler if we can draw from

$$
P\left(\theta^{T} \mid Y^{T}, V\right)
$$

and from

$$
P\left(V \mid Y^{T}, \theta^{T}\right)
$$

Stationarity

- CS exclude draws of θ_{t} for which the $d g p$ of y_{t} is nonstationary:
- $p\left(\theta_{t} \mid \cdot\right)$ is density without imposing stationarity and
- $f\left(\theta_{t} \mid \cdot\right)$ is density with imposing stationarity
- This restriction is ignored in these slides

Gibbs part I: Posterior of theta given V

- Since $f(A, B)=f(A \mid B) \times f(B)$, we have

$$
\begin{aligned}
& p\left(\theta^{T} \mid Y^{T}, V\right)=f\left(\theta^{T} \mid Y^{T}, V\right) \\
= & f\left(\theta^{T-1} \mid \theta_{T}, Y^{T}, V\right) \times f\left(\theta_{T} \mid Y^{T}, V\right) \\
= & f\left(\theta^{T-2} \mid \theta_{T}, \theta_{T-1}, Y^{T}, V\right) \times f\left(\theta_{T-1} \mid \theta_{T}, Y^{T}, V\right) \\
& \times f\left(\theta_{T} \mid Y^{T}, V\right) \\
= & f\left(\theta^{T-3} \mid \theta_{T}, \theta_{T-1}, \theta_{T-2}, Y^{T}, V\right) \times f\left(\theta_{t-2} \mid \theta_{T}, \theta_{T-1}, Y^{T}, V\right) \\
& \times f\left(\theta_{T-1} \mid \theta_{T}, Y^{T}, V\right) \times f\left(\theta_{T} \mid Y^{T}, V\right)
\end{aligned}
$$

Posterior of theta given V

- Since

$$
\theta_{t}=\theta_{t-1}+v_{t},
$$

$\theta_{t+\tau}$ has no predictive power for θ_{t-1} for all $\tau \geq 1$ given Y^{T} and θ_{t},

- Thus

$$
\begin{aligned}
f\left(\theta_{T-2} \mid \theta_{T}, \theta_{T-1}, Y^{T}, V\right)= & f\left(\theta_{T-2} \mid \theta_{T-1}, Y^{T}, V\right) \\
f\left(\theta_{T-3} \mid \theta_{T}, \theta_{T-1}, \theta_{T-2}, Y^{T}, V\right)= & f\left(\theta_{T-3} \mid \theta_{T-2}, Y^{T}, V\right) \\
& \text { etc. }
\end{aligned}
$$

Posterior of theta given V

- Combining gives

$$
p\left(\theta^{T} \mid Y^{T}, V\right)=f\left(\theta_{T} \mid Y^{T}, V\right) \prod_{t=1}^{T-1} f\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right)
$$

- All the densities are Gaussian \Longrightarrow if we know the means and the variances, then we can draw from $p\left(\theta^{T} \mid Y^{T}, V\right)$

Posterior of theta given V

We need to find the means and variances of

$$
f\left(\theta_{T} \mid Y^{T}, V\right) \& f\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right)
$$

Notation

$$
\begin{aligned}
\theta_{t \mid t} & =\mathbb{E}\left(\theta_{t} \mid Y^{t}, V\right) \\
P_{t \mid t-1} & =\operatorname{VAR}\left(\theta_{t} \mid Y^{t-1}, V\right) \\
P_{t \mid t} & =\operatorname{VAR}\left(\theta_{t} \mid Y^{t}, V\right) \\
\theta_{t \mid t+1} & =\mathbb{E}\left(\theta_{t} \mid \theta_{t+1}, Y^{t}, V\right)=\mathbb{E}\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right) \\
P_{t \mid t+1} & =\operatorname{VAR}\left(\theta_{t} \mid \theta_{t+1}, Y^{t}, V\right)=\operatorname{VAR}\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right)
\end{aligned}
$$

Posterior of theta given V

- First, use Kalman filter to go forward
- start with θ_{0} and $P_{0 \mid 0}$
- Next, go backwards to get draws for θ_{t} given θ_{t+1}

Posterior of theta given V

- Kalman filter part:

$$
\begin{aligned}
y_{t} & =X_{t}^{\prime} \theta_{t}+\varepsilon_{t} \\
X_{t}^{\prime} & =\left[1, y_{t-1}, y_{t-2}, \cdots, y_{t-p}\right] \\
\theta_{t} & =\theta_{t-1}+v_{t} \\
\varepsilon_{t} & \sim N(0, R) \\
v_{t} & \sim N(0, Q)
\end{aligned}
$$

- Here:
- the $p+1$ elements of X_{t} are the known (time-varying) coefficients of the state-space represenation
- the elements of θ_{t} are the unobserved underlying state variables

Posterior of theta given V

- Kalman filter in the first period:

$$
\begin{aligned}
P_{1 \mid 0} & =P_{0 \mid 0}+Q \\
K_{1} & =P_{1 \mid 0} X_{1}\left(X_{1}^{\prime} P_{1 \mid 0} X_{1}+R\right)^{-1} \\
\theta_{1 \mid 1} & =\theta_{0 \mid 0}+K_{1}\left(y_{1}-X_{1}^{\prime} \theta_{0 \mid 0}\right)
\end{aligned}
$$

- and then iterate

$$
\begin{aligned}
P_{t \mid t-1} & =P_{t-1 \mid t-1}+Q \\
K_{t} & =P_{t \mid t-1} X_{t}\left(X_{t}^{\prime} P_{t \mid t-1} X_{t}+R\right)^{-1} \\
\theta_{t \mid t} & =\theta_{t-1 \mid t-1}+K_{t}\left(y_{t}-X_{t}^{\prime} \theta_{t-1 \mid t-1}\right) \\
P_{t \mid t} & =P_{t \mid t-1}-K_{t} X_{t}^{\prime} P_{t \mid t-1}
\end{aligned}
$$

Posterior of theta given V

- In the Kalman filter part of the assignment:

$$
\begin{aligned}
\mathrm{TH}(:, 1) & =\theta_{0} \\
\mathrm{TH}(:, \mathrm{t}+1) & =\theta_{t \mid t} \\
\mathrm{Pe}(:,,, \mathrm{t}) & =P_{t-1 \mid t-1} \\
\mathrm{Po}(:,,, \mathrm{t}) & =P_{t \mid t-1}
\end{aligned}
$$

- and we go up to

$$
\begin{aligned}
\mathrm{TH}(:, \mathrm{T}+1) & =\theta_{T \mid T} \\
\operatorname{Pe}(:,:, \mathrm{T}+1) & =P_{T \mid T} \\
\operatorname{Po}(:,:, \mathrm{T}) & =P_{T \mid T-1}
\end{aligned}
$$

Posterior of theta given V

- Distribution terminal state:

$$
f\left(\theta_{T} \mid Y^{T}, V\right)=N\left(\theta_{T \mid T}, P_{T \mid T}\right)
$$

- From this we get a draw θ_{T}

Posterior of theta given V

- Draws for $\theta_{T-1}, \theta_{T-2}, \cdots, \theta_{1}$ are obtained recursively from

$$
\begin{aligned}
f\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right) & =N\left(\theta_{t \mid t+1}, P_{t \mid t+1}\right) \\
\theta_{t \mid t+1} & =\theta_{t \mid t}+P_{t \mid t} P_{t+1 \mid t}^{-1}\left(\theta_{t+1}-\theta_{t \mid t}\right) \\
P_{t \mid t+1} & =P_{t \mid t}-P_{t \mid t} P_{t+1 \mid t}^{-1} P_{t \mid t}
\end{aligned}
$$

- The terms needed to calculate $\theta_{t \mid t+1}$ and $P_{t \mid t+1}$ are generated by the Kalman filter (that is, from going forward) and the standard projection formulas (and note that the covariance of θ_{t+1} and θ_{t} is the variance of θ_{t})

Details for previous slide

$$
\begin{aligned}
\mathbb{E}[y \mid x] & =\mu_{y}+\Sigma_{y x} \Sigma_{x x}^{-1}\left(x-\mu_{x}\right) \\
& \Longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[\theta_{t} \mid \theta_{t+1} ; \cdot\right] & =\mathbb{E}\left[\theta_{t} \mid \cdot\right]+\Sigma_{\theta_{t} \theta_{t+1}} \Sigma_{\theta_{t+1} \theta_{t+1}}^{-1}\left(\theta_{t+1}-\mathbb{E}\left[\theta_{t+1} \mid \cdot\right]\right) \\
& =\mathbb{E}\left[\theta_{t} \mid \cdot\right]+\Sigma_{\theta_{t} \theta_{t}} \Sigma_{\theta_{t+1}}^{-1} \theta_{t+1}\left(\theta_{t+1}-\mathbb{E}\left[\theta_{t+1} \mid \cdot\right]\right) \\
& \Longrightarrow \\
\theta_{t \mid t+1} & =\theta_{t \mid t}+P_{t \mid t} P_{t+1 \mid t}^{-1}\left(\theta_{t+1}-\mathbb{E}\left[\theta_{t}+v_{t} \mid \cdot\right]\right) \\
& =\theta_{t \mid t}+P_{t \mid t} P_{t+1 \mid t}^{-1}\left(\theta_{t+1}-\mathbb{E}\left[\theta_{t} \mid \cdot\right]\right) \\
& =\theta_{t \mid t}+P_{t \mid t} P_{t+1 \mid t}^{-1}\left(\theta_{t+1}-\theta_{t \mid t}\right)
\end{aligned}
$$

Suppressing the dependence on Y^{t} and V to simplify notation

Posterior of theta given V

In the backward part of the assignment:
Draw from TH(t-1|t)
In the for loop below t goes from high to low.
At a particular t :
(1) $\mathrm{TH}(:, \mathrm{t}+1)$ it is a random draw from a normal that has already been determined (either in this loop or for T above)
(2) TH(:,t) on the RHS of the mean equation is equal to theta_($\mathrm{t}-1$)| $(\mathrm{t}-1)$
(3 $\mathrm{TH}(:, \mathrm{t})$ what we end up with is a random draw for theta($\mathrm{t}-1$) conditional on knowning theta in the next period

Why go forward \& backward?

- The Kalman filter gives us $\mathbb{E}\left(\theta_{t} \mid Y^{t}, V\right)$ and $\operatorname{VAR}\left(\theta_{t} \mid Y^{t}, V\right)$
- With this information, we can also obtain draws for θ_{t}
- However, we need draws from $f\left(\theta^{T} \mid Y^{T}, V\right)$ not from $f\left(\theta^{T} \mid Y^{t}, V\right)$. The analysis above showed how to get draws from $f\left(\theta^{T} \mid Y^{T}, V\right)$ recursively by going backward.

Relation to Kalman Smoother

- The Kalman smoother also goes backwards and resembles the procedure here.
- However, there is a difference.
- The Kalman smoother computes the mean and variance for $f\left(\theta_{t} \mid Y^{T}, V\right)$
- We need the mean and variance for $f\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right)$
- Since

$$
f\left(\theta_{t} \mid \theta_{t+1}, Y^{T}, V\right)=f\left(\theta_{t} \mid \theta_{t+1}, Y^{t}, V\right)
$$

we can calculate these from Kalman filter without using the Kalman smoother

Gibbs part II: Posterior of V given theta

- Next step is to draw from the posterior given Y^{T} and θ^{T}, that is get a draw from $p\left(V \mid Y^{T}, \theta^{T}\right)$
- The posterior combines the prior and information from the data \Longrightarrow in each Gibbs iteration the prior is the same but the data set (i.e., θ^{T}) is different

Gibbs part II: Posterior of V given theta

- Given Y^{T} and θ^{T}, we can calcluate ε_{t} and v_{t}.
- Both have mean zero and a Normal distribution
- Thus

$$
\begin{aligned}
p\left(V \mid Y^{T}, \theta^{T}\right) & =\operatorname{IW}\left(V_{1}^{-1}, T_{1}\right) \\
T_{1} & =T_{0}+T \\
V_{1} & =\bar{V}+\bar{V}_{T} \\
\bar{V}_{T} & =\sum_{t=1}^{T}\binom{\varepsilon_{t}}{v_{t}}\left(\varepsilon_{t}^{\prime} v_{t}^{\prime}\right)
\end{aligned}
$$

!!! Note that $\bar{V}, \bar{V}_{T}, \& \bar{V}_{1}$ are like a sum of squares, whereas V (and $R \& Q$) are like a sum of squares divided by number of observations (same notation as in CS)

References

- Casella, G., and E.I. George, 1992, Explaining the Gibbs Sampler, The American Statistician, 46 167-74.
- Cogley, T. and T.J. Sargent, 2001, Evolving Post-World War II U.S. Inflation Dynamics, NBER Macroeconomics Annual 2001, volume 16, 331-338.
- De Wind, J, 2014, Accounting for time-varying and nonlinear relationships in macroeconomic models, dissertation, University of Amsterdam. Available at http://dare.uva.nl/document/523663.
- Lancaster, T., 2004, An introduction to modern Bayesian econometrics, Blackwell Publishing.
- very nice textbook covering lots of stuff in an understandable way

