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Time-Varying VARs

Gibbs-Sampler

e general idea
e probit regression application

(Inverted) Wishart distribution
Drawing from a multi-variate Normal in Matlab

Time-varying VAR

e model specification
o Gibbs sampler

Gibbs part Il
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Gibbs Sampler

Suppose

e x, Y, and z are distributed according to f (x,y,z)
e Suppose that drawing x, y, and z from f (x,y,z) is difficult

e but
you can draw x from f (x|y,z) and
you can draw v from f (y|x,z) and
you can draw y from f (z|x,y)
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Gibbs Sampler - how it works

Start with v, zo

Draw x1 from f ( ),
Draw y; from f (y|x1,20),
( )
( )

Draw z; from f (z|x1, 11

Draw x;, from f (x|y1, 21

(x;,Y;,z;) is one draw from the joint density f(x,y,z)

Although series are constructed recursively, they are not time
series
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Gibbs Sampler - convergence

e The idea is that this sequence converges to a sequence drawn

from f (x,y,2) .

e Since convergence is not immediate, you have to discard
beginning of sequence (burn-in period).

e See Casella and George (1992) for a discussion on why and
when this works.
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Gibbs Sampler - probit regression

This example is from Lancaster (2004)

e y; is the i*" observation of a binary variable, i.e., y; € {0,1}

e y; is an unobservable and given by

v; =xip+¢e, &~N(0,1)

1 ifyr>0
y={ Ui =

0 o.w.
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Probit regression

Parameters: B and y* = [y’{,y}‘,- )

Data: X =[xy, x2,- -+, %n), Y = {vi, xi}i4

Objective: get p (B|Y) i.e., the distribution ofB given Y.

With the Gibbs sample we can get a sequence of obervations
for (B, ﬁ) distributed according to p (B,y*w), from which

we can get p (B|Y)

7/38



Overview Gibbs Little things Time-varying VARs Gibbs part | Gibbs part 1l

Probit - Gibb sampler step 1

We need to draw from p <E|y*, Y)

e Given y* and X
BN ((xXx) Xy, (xXXx) 7,

since the standard deviation of ¢; is known and equal to 1.
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Probit - Gibb sampler step 2

We need to draw from p (y*|B,Y)

e Since the y;s are independent, we can do this separately for
each i
y? ~ TVE>0 (1313,1) if;yi =1
y;k ~ N<0 (xi,B,l) if Yi = 0’

where
N-q (-) is a Normal distribution truncated on the left at 0
N (-) is a Normal distribution truncated on the right at 0
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Wishart distribution

generalization of Chi-square distribution to more variables

e X : 1 X p matrix; each row drawn from N, (0,X), where ¥ is
the p X p variance-covariance matrix

W =X'X ~ W, (%,n), ie., the p-dimensional Wishart with
scale matrix £ and degrees of freedom n

You get the Chi-square if p =1 and 2 =1
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Inverse Wishart distribution

e If W has a Wishart distribution with parameters £ and n, then
W~ has an inverse Wishart with scale matrix ©~! and degrees
of freedom n

e !l In the assignment, the input of the Matlab Inverse Wishart
function is ¥ not 1.
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Inverse Wishart in Bayesian statistics

e Data: x; is a p X 1 vector with i.i.d. random observations with
distribution N (0, V)
e prior of V' :
p(V)=IW (I_/_l,n>

e posterior of V :
p <V]XT> = IW (W’l,n + T)
W = V4+Vr
Vr = ix{xt
t=1

Note that VT is like a sum of squares
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Multivariate normal in Matlab

x¢ is a p x 1 vector and we want x; ~ N(0,X)

C=chol (X)
Thus C is an upper-triangular matrix and C'C = &

et is a p x 1 vector with draws from N(0,1,)

E [C'eejC] =%

Thus, C'e is a p x 1 vector with draws from N(0, %)
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Time-varying VARs - intro

e Idea: capture changes in model specification in a flexible way

e The analysis here is based on Cogley and Sargent (2002), CS
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Model specification

Yt
X;

&t
(%

X;Qt + &

[1, Yi—1,Yt—2, /yt—P]
9t—1 + v

N(0,R)
N(0,Q)

Gibbs part 11
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Model specification

e 0; : "parameters"

e R, C, and Q are the "hyperparameters"
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Model specification - details

Simplifying assumptions:
e CS impose that 6; is such that y; would be stationary if

0+ = 6; for all T > 0. This stationarity requirement is left out
for transparency.

e C=0.
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Notation

YU = [yl

0T = [6),67,--,0%]
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Priors

e Prior for initial condition:

60 ~ N (3,P)

e Prior for hyperparameters:

p(V) = IW (V_l,TO)

e« 0,P,V, Ty are taken as given
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Posterior

e The posterior is given by

p <9T, V|YT)

e We can use the Gibbs sampler if we can draw from
p (9T|YT, V)

and from
p <V|YT, 9T>
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Stationarity

o (S exclude draws of 8; for which the dgp of y; is nonstationary:
e p(6¢]-) is density without imposing stationarity and
e f(6¢-) is density with imposing stationarity

e This restriction is ignored in these slides
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Gibbs part |: Posterior of theta given V
e Since f (A,B) = f(A|B) x f(B), we have

p (HT]YT, v) —f (9T|YT, V)

= £ (07 Mor, YT, V) x f (6rY", V)
= F(6720r, 001, YT,V ) xf(GT_1|9T,YT,V>
xf (9T|YT )

= f eT—3\9T,9T_1,9T_2,YT,V) x f(et_sz,eT_l,YT,v)
xf (Oraler, YT, V) x £ (6rY", V)
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Posterior of theta given V

e Since
0r =011+,
6;,+ has no predictive power for 8;_1 for all T > 1 given YT
and 6,
e Thus

f (9H|9T, or 1, YT, V) = f (0H|9H, YT, V)

f(QT—3|9T/9T—1,9T—2, Y7, V) = f(eT—a\QT—szT, V)
etc.
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Posterior of theta given V

e Combining gives

p <9T|YT, V) —f <9T|YT, V) hl f <9t]9t+1,YT, V)
t=

e All the densities are Gaussian = if we know the means and
the variances, then we can draw from p <9T|YT, V
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Posterior of theta given V

We need to find the means and variances of
f (9T|YT, v) &f <9t|et+1, YT, v)
Notation
9f|t — ]E (9t|Yt, V)
Py_i = VAR (etwf—l,v)
Py = VAR (6:Y", V)
Biis1 = E(6:]6:11,Y', V) = E (9t|9t+1,YT, V)
Pys1 = VAR (6]0:41,Y',V) = VAR (9t|9t+1,YT, V)
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Posterior of theta given V

e First, use Kalman filter to go forward
e start with 6y and Py

e Next, go backwards to get draws for 6; given 6;1
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Posterior of theta given V

e Kalman filter part:

v = Xi0r+e

Xi = [LyivYe—2 - Yi—p)
Qt = 9,5_1+Z)t

& ~ N(O,R)
O~ N(O/Q)

o Here:
e the p+ 1 elements of X; are the known (time-varying)
coefficients of the state-space represenation

o the elements of 6; are the unobserved underlying state variables
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Posterior of theta given V

e Kalman filter in the first period:

Pyg = Popo+0Q

-1
Ki = PyoX (Xgpuoxl +R)

O1p = boo+Ki (}/1 - X190|0)

Pypo1 = Prqp1+0Q

-1
Ki = PyiX; (X;Pt|t_1xt+R)

Ot = Or1p1 + K <}/t - X29t71|t71>

pt|t = Pt|t71 - KtXilfPt|tfl

Gibbs part Il
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Posterior of theta given V

¢ In the Kalman filter part of the assignment:

TH(Z,].) 90
Pe(:,t) = Piqipq
PO(:,:,t) Pt‘t—l

e and we go up to
TH(,T+1) = 9T|T

Pe(:,:, T+1)
PO(:,:,T) = PT|T*1

I

S
=
ﬂ

Gibbs part Il
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Posterior of theta given V

e Distribution terminal state:

£ (0¥, V) = N (0ry7, Pryr)

e From this we get a draw 07
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Posterior of theta given V

e Draws for O7_1,01_5,- - ,01 are obtained recursively from

f <6t|6t+1rYT/ V) = N (9t|t+1,Pt\t+1>
Oirr = O + Pt\tp;rlw <9t+1 — 9t\t>

_ -1
Pyepr = Pye—PyePy ) Pre

e The terms needed to calculate 0y, and Py, are generated
by the Kalman filter (that is, from going forward) and the
standard projection formulas (and note that the covariance of
0:+1 and 0 is the variance of 6;)
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Details for previous slide

E [y|x] My Zp i (¥ = piy)

—
E[0:0i21;] = E[0]]+Z0,, 5, 4, (01 — E[6i11]])
= E[0]]+ 2005, 4, Orr1 — E[0r11]])
—

O + Pt|tPt_+11|t (0111 — E[0r + o)
= Oy +Pt|tpt_+11|t (0111 — E[0¢]])

= Oyt Pt|tpt_+11|t <9t+1 - 9t|t>

0111

Suppressing the dependence on Y! and V to simplify notation
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Posterior of theta given V

In the backward part of the assignment:

Draw from TH(t-1|t)
In the for loop below t goes from high to low.

At a particular t:

® TH(:,t+1) it is a random draw from a normal that
has already been determined (either in this loop
or for T above)

® TH(:,t) on the RHS of the mean equation is equal
to theta_(t-1)|(t-1)

© TH(:,t) what we end up with is a random draw for
theta(t-1) conditional on  knowning theta in the
next period
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Why go forward & backward?

e The Kalman filter gives us E (6;|Y’, V) and VAR(6:|Y", V)

e With this information, we can also obtain draws for 6;

¢ However, we need draws from f <9T|YT, V) not from
f <9T|Yt, V). The analysis above showed how to get draws
from f <9T|YT, V) recursively by going backward.
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Relation to Kalman Smoother

e The Kalman smoother also goes backwards and resembles the
procedure here.

e However, there is a difference.
e The Kalman smoother computes the mean and variance for
f(6:YT, V)
e We need the mean and variance for f (Ht]9t+1,YT, V)
e Since

f (9t|9t+1/YT/ V) =f (616141, Y, V),

we can calculate these from Kalman filter without using the
Kalman smoother
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Gibbs part Il: Posterior of V given theta

e Next step is to draw from the posterior given YT and 07, that
is get a draw from p <V|YT,9T)

e The posterior combines the prior and information from the data
= in each Gibbs iteration the prior is the same but the data
set (i.e., 07) is different
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Gibbs part Il: Posterior of V given theta

e Given YT and 67, we can calcluate & and v;.
e Both have mean zero and a Normal distribution

e Thus

p(V|YT,9T) = IW(V{,Ty)

T, = To+T

Vi = V+Vr

— T &

= n ()@
t=1 t

Il Note that V, VT, &V are like a sum of squares, whereas V
(and R&Q) are like a sum of squares divided by number of
observations (same notation as in CS)
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