
Nonlinear and Stable Perturbation-Based Approximations

Appendix

Wouter J. Den Haan∗ and Joris De Wind†

April 26, 2012

Abstract

Appendix A.1 compares the differences between the alternative pruning proce-

dures. Appendix A.2 shows that the nth -order pruned perturbation approximation

does not deliver an exact fit if the truth is a polynomial even though a pruned pertur-

bation approximation is a polynomial. Appendix A.3 shows that our implementation

of the pruning procedure is a proper perturbation approximation. Appendix B dis-

cusses details regarding the implementation of the perturbation-plus procedure. Ap-

pendix C shows that our numerical approximation obtained with a projection method

is very accurate and can, thus, be used as a stand-in for the truth.

∗Corresponding author. Department of Economics, London School of Economics and Political Science,

Houghton Street, London WC2A 2AE, UK; CEPR, London, UK. e-mail: wjdenhaan@gmail.com.
†CPB Netherlands Bureau for Economic Policy Analysis, Van Stolkweg 14, 2585 JR Den Haag, The

Netherlands. e-mail j.de.wind@cpb.nl.

A More on pruning

Kim, Kim, Schaumburg, and Sims (2008) and Lombardo (2010) describe how to construct

a second-order pruned perturbation approximation. Lombardo (2010) also explains why

his formulation of the second-order pruned perturbation approximation is a second-order

local approximation. The formulation in Lombardo (2010) is somewhat different than the

one used in Kim, Kim, Schaumburg, and Sims (2008) and is somewhat different than the

one used in this paper.

This appendix has three objectives. First, we want to discuss the similarities and

differences between the formulation used in Lombardo (2010) and the one used in this

paper. Second, we want to explain why a second-order pruned perturbation approxima-

tion is a second-order approximation even though the second-order pruned perturbation

approximation of a second-order polynomial is not simply that second-order polynomial.

The third purpose of this appendix is to explain how to and how not to do higher-order

pruning.

A.1 Different formulations for pruning

The differences are explained using a simple example. Throughout this subsection, we

assume that the true law of motion is given by

xt = ρ1xt−1 + ρ2x
2
t−1 + σεt, (1)

E
[
ε2
t

]
= 1. (2)

We assume that |ρ1| < 1, which implies that the process is locally stable. The regular

second-order perturbation approximation is simply equal to the function itself, that is,

xt = f̃2nd (x−1;σ) = ρ1xt−1 + ρ2x
2
t−1 + σεt. (3)

1

Lombardo (2010) generates the second-order pruned perturbation approximation using

the following system of equations:

x̃
(2)
t = σx̃

[1]
t + σ2x̃

[2]
t , (4a)

x̃
[1]
t = ρ1x̃

[1]
t−1 + εt, (4b)

x̃
[2]
t = ρ1x̃

[2]
t−1 + ρ2

(
x̃

[1]
t−1

)2
. (4c)

We generate the second-order pruned perturbation approximation using

x̂
(2)
t = ρ1x̂

(2)
t−1 + ρ2

(
x̂

(1)
t−1

)2
+ σεt, (5a)

x̂
(1)
t = ρ1x̂

(1)
t−1 + σεt. (5b)

Suppose that

x̃
(1)
0 = x̃

(2)
0 = x̂

(1)
0 = x̂0 = x0 = 0 (6)

and

εt = 1 if t = 1, (7)

εt = 0 if t > 1. (8)

For this set of values for εt,1

x̃
(2)
t = x̂

(2)
t 6= xt and (9)

x̃
(2)
t − xt = x̂

(2)
t − xt = O(σ3). (10)

Nevertheless, there is a difference between the two formulations. This is easy to see

when σ = 0. The formulation according to equation (4) implies that

x̃
(2)
t = 0 ∀t, (11)

1A function f(σ) = O (σm) if there exist an M such that

lim
σ→0

f(σ)

σm
< M <∞.

2

whereas the formulation according to equation (5) implies that

x̂
(2)
t = ρ1x̂

(2)
t−1 + ρ2

(
x̂

(1)
t−1

)2
, (12a)

x̂
(1)
t = ρ1x̂

(1)
t−1. (12b)

That is, the formulation of Lombardo (2010) does not describe any transition dynamics,

whereas our formulation does. Nevertheless, it is easy to show that both formulations are

proper second-order approximations if an additional condition is satisfied. Suppose that

xt is generated by equation (1), x̃
(2)
t is generated by equation (4), and x̂(2)

t is generated by

equation (5). Then it is easy to show that

x̃
(2)
t = xt +O(σ3) and (13)

x̂
(2)
t = xt +O(σ3) (14)

if

x0 = σ2x̄0 with x̄0 <∞. (15)

That is, our pruned perturbation formulation does allow transition dynamics, but the

initial value chosen cannot be too far away from the steady state. Similarly, it is acceptable

to ignore transition dynamics, but only if the initial value is close enough to the steady

state. It is obvious that a condition like this is needed. There are values for x0 such that

the time path generated by the true law of motion given in equation (1) explodes, whereas

the time paths generated by equations (4) and (5) never explode.

A.2 Pruned perturbation and inability to fit polynomials exactly

Pruned perturbation approximations as well as regular perturbation approximations are

polynomials. If the truth is an nth-order polynomial, then the regular nth-order pertur-

bation approximation would give an exact fit. But the pruned nth-order perturbation

approximation is not able to accomplish this. We use the following example to explain the

reason.

Suppose that the truth is given by

xt = α1xt−1 + α2x
2
t−1 + σεt (16)

3

with

Et
[
ε2
t

]
= 1.

The second-order pruned perturbation approximation is generated by the following sys-

tem:2

x
(1)
t = α1x

(1)
t−1 + σεt, (17)

x
(2)
t = α1x

(2)
t−1 + α2

(
x

(1)
t−1

)2
+ σεt. (18)

Although the law of motion for xt, given in equation (18), closely resembles the true law

of motion, given in equation (16), there is one fundamental difference. The difference is

that the expression in equation (18) contains x(1)
t−1, which is generated by a different law

of motion than xt.

Now consider higher-order approximations. When the truth is given by equation (16),

then the third-order regular perturbation approximation is, of course, equal to the second-

order regular perturbation approximation, which in turn is equal to the truth. But this is

not true for the pruned perturbation approximation. The third-order pruned perturbation

approximation is generated by the following set of equations:

x
(1)
t = α1x

(1)
t−1 + σεt, (19)

x
(2)
t = α1x

(2)
t−1 + α2

(
x

(1)
t−1

)2
+ σεt, (20)

x
(3)
t = α1x

(3)
t−1 + α2

(
x

(2)
t−1

)2
+ σεt. (21)

The third-order pruned perturbation approximation still does not match the true second-

order polynomial, although the mistake has become smaller.3

There is a neat way to characterize the error made by the pruned perturbation ap-

proximation. Suppose one uses the pruned perturbation approximation to calculate the

impulse response function (IRF) of a unit-shock to εt starting at the steady state. If the

2The inability to fit a regular polynomial is also true for the pruning approximation according to

equation (4), x̃(2)t .

3The variable that is being squared is now being generated by a law of motion that is closer to the

truth.

4

truth is a second-order polynomial, then the nth-order pruned perturbation approximation

will give the right values for the IRF for the first n periods. Thus, the second-order pruned

perturbation approximation will give the right answer only up to the first two periods.

The question arises whether it is desirable that pruned perturbation approximations

do not (approximately) replicate a polynomial when the truth is (approximately) a poly-

nomial. Many functions in economic models can be approximated well with a low-order

polynomial of the original state variables. The distortion that is introduced by the pruned

perturbation approximations is in those cases likely to deteriorate the approximation. But

not all functions are approximated well with a polynomial. That is likely to be the case

when regular perturbation approximations explode and the true model solution does not.

But the fact that regular polynomials provide a poor approximation does, of course, not

imply that pruned perturbation approximations do. There are many aspects to a function

and stability is only one of them.

A.3 Convergence of our pruning formulation

In this subsection, we discuss in more detail why our formulation of nth-order pruned

perturbation generates approximations that are of order O(σn+1).

A.3.1 Convergence of second-order pruning

To simplify the notation, we assume that the true law of motion is defined by

0 = Et [H(xt+1, xt, xt−1, zt;σ)] , (22)

zt = σεt, (23)

where xt and εt are scalars. The regular second-order perturbation approximation can be

written as

X
(2)
t;σ =

f
′
xX

(2)
t−1;σ + f

′
zσεt

+0.5f
′′
x2

(
X

(2)
t−1;σ

)2
+ f

′′
xzX

(2)
t−1;σσεt + 0.5f

′′
z2 (σεt)

2
, (24a)

x
(2)
t;σ = X

(2)
t;σ + x̄2nd ;σ. (24b)

5

Note that X(2)
t;σ is defined as the value xt relative to the stochastic steady state of the

second-order approximation, not relative to the non-stochastic steady state. This means

that its value depends on σ. Our formulation of the pruned second-order perturbation

approximation, X̂(2)
t;σ is given by

X̂
(1)
t;σ = f

′
xX̂

(1)
t−1;σ + f

′
zσεt, (25a)

X̂
(2)
t;σ =

f
′
xX̂

(2)
t−1;σ + f

′
zσεt

+0.5f
′′
x2

(
X̂

(1)
t−1;σ

)2
+ f

′′
xzX̂

(1)
t−1;σσεt + 0.5f

′′
z2 (σεt)

2
, (25b)

x̂
(2)
t;σ = X̂

(2)
t;σ + x̄2nd ;σ. (25c)

The formulation for the pruned perturbation approximation used in the literature is given

by

X̃
(1)
t = f

′
xX̃

(1)
t−1 + f

′
zσεt, (26a)

X̃
(2)
t;σ = c̄2nd ;σ +

f
′
xX̃

(2)
t−1 + f

′
zσεt

+0.5f
′′
x2

(
X̃

(1)
t−1

)2
+ f

′′
xzX̃

(1)
t−1σεt + 0.5f

′′
z2 (σεt)

2
, (26b)

x̃
(2)
t;σ = X̃

(2)
t;σ + x̄, (26c)

where x̄ is the non-stochastic steady state.

Our formulation ensures that the stochastic steady state of X̂(1)
t;σ and X̂

(2)
t;σ are both

equal to zero, which ensures that the stochastic steady state of x̂(2)
t;σ is equal to the sto-

chastic steady state of the original second-order perturbation approximation. In contrast,

according to the formulation used in the literature the three variables, X(2)
t;σ , X̃

(1)
t;σ , and X̃

(2)
t;σ

have three different steady state values. For the discussion in this section, this difference

does not matter, because here we consider the case that σ −→ 0 and the three stochastic

steady states would then converge to the non-stochastic steady state.4

The parameter σ plays two roles in the approximation. First, it controls the volatility

of the driving process. Second, it affects the coeffi cients of the approximation. Here it

4As discussed in the main text, the motivation for our modification is the following. If higher-order

perturbation introduces a correction for uncertainty, then it makes sense to apply this correction to all

measures of the state variables that are introduced by the pruning procedure.

6

is convenient to separate these two roles. We let Ω indicate the value of volatility used

to determine the coeffi cients of the perturbation approximation and we let σ indicate the

value of the driving process. That is, we write the regular second-order perturbation

approximation as

X
(2)
t;Ω =

f
′
x;ΩX

(2)
t−1;Ω + f

′
z;Ωσεt

+0.5f
′′
x2;Ω

(
X

(2)
t−1;Ω

)2
+ 0.5f

′′
z2;Ω (σεt)

2 + f
′′
xz;ΩX

(2)
t−1;Ωσεt

(27)

and the corresponding pruned perturbation approximation as

X̂
(2)
t;Ω =

f
′
x;ΩX̂

(2)
t−1;Ω + f

′
z;Ωσεt

+0.5f
′′
x2;Ω

(
X̂

(1)
t−1;Ω

)2
+ 0.5f

′′
z2;Ω (σεt)

2 + f
′′
xz;ΩX̂

(1)
t−1;Ωσεt

(28a)

X̂
(1)
t;Ω = f

′
x;ΩX̂

(1)
t−1;Ω + f

′
z;Ωσεt (28b)

We know that the regular perturbation approximation given in equation (27) is a

second-order approximation if σ and Ω approach zero.5 Consequently, if the perturbation

approximation given in equation (28) approaches the perturbation approximation given

in equation (27) as σ −→ 0, then it is a second-order approximation of the truth if σ and

Ω approach zero.

We will show that our pruned perturbation approximation converges to the regular

perturbation approximation for fixed Ω, which implies that our procedure correctly ap-

proximates the correction that higher-order perturbation introduces for uncertainty (indi-

cated by Ω) at least as σ −→ 0. For the regular pruning formulation this is only true if

both Ω −→ 0 and σ −→ 0.

The difference between X(2)
t;Ω and X̂

(2)
t,Ω is equal to

X
(2)
t;Ω − X̂

(2)
t;Ω =

f
′
x;Ω

(
X

(2)
t−1;Ω − X̂

(2)
t−1;Ω

)
+0.5f

′′
x2;Ω

((
X

(2)
t−1;Ω

)2
−
(
X̂

(1)
t−1;Ω

)2
)

+f
′′
xz;Ωεt

(
σX

(2)
t−1;Ω − σX̂

(1)
t−1;Ω

) (29)

To see that X(2)
t;Ω − X̂

(2)
t;Ω = O(σ3), first note that

X
(2)
t−1;Ω − X̂

(1)
t−1;Ω = O(σ2), (30)

5As in appendix A.1, one needs to assume that the initial condition converges to the steady state at

the appropriate rate as σ approaches zero.

7

which means that

σX
(2)
t−1;Ω − σX̂

(1)
t−1;Ω = O(σ3). (31)

Moreover, since X(1)
t−1;Ω is O(σ2) and X(2)

t−1;Ω is O(σ3), it is also true that(
X

(2)
t−1;Ω

)2
−
(
X̂

(1)
t−1;Ω

)2
= O(σ3). (32)

Consequently, the only term remaining is X(2)
t−1;Ω − X̂

(2)
t−1;Ω. But given the last two results

this will be O(σ3) as long as the difference in the initial conditions is O(σ3) as in equation

(15).

A.3.2 Convergence of higher-order pruning

The discussion above easily extends to the case for higher-order pruning. But one should

be careful in specifying the formulation for higher-order pruned perturbation. We make

this clear using a simple example.

Let the true law of motion be given by

xt = ρ1xt−1 + ρ2x
2
t−1 + ρ3x

3
t−1 + σεt, (33a)

E
[
ε2
t

]
= 1. (33b)

As discussed in section 4.2 in the main text, the third-order pruned perturbation solution

is given by

x̂
(3)
t = ρ1x̂

(3)
t−1 + ρ2

(
x̂

(2)
t−1

)2
+ ρ3

(
x̂

(1)
t−1

)3
+ σεt (34)

x̂
(2)
t = ρ1x̂

(2)
t−1 + ρ2

(
x̂

(1)
t−1

)2
+ σεt (35)

x̂
(1)
t = ρ1x̂

(1)
t + σεt (36)

Using the same logic as used in section A.3.1 for second-order pruning, it is easy to

show that

xt − x̂(3)
t = O(σ4). (37)

Now consider the following alternative formulation:

x̃
(3)
t = ρ1x̃

(3)
t−1 + ρ2

(
x̃

(1)
t−1

)2
+ ρ3

(
x̃

(1)
t−1

)3
+ σεt (38a)

x̃
(1)
t = ρ1x̃

(1)
t−1 + σεt (38b)

8

This formulation does not generate a proper third-order approximation. To see that

xt − x̃(3)
t 6= O(σ4) (39)

consider the following example. Suppose that

x0 = 0, (40)

εt = 1 if t = 1, (41)

εt = 0 if t > 1. (42)

Table 1 reports the time paths for xt and x̃
(3)
t . The term in bold, 2ρ1ρ2σ

3, in the third

period makes clear that the difference between xt and x̃
(3)
t is not of order O(σ4).

B Implementation of the perturbation-plus procedure

In this appendix, we describe a faster version of the perturbation-plus procedure and we

describe in detail how we implemented the perturbation-plus procedure.

B.1 Faster implementation

An important factor that slows down the perturbation procedure is that there is no ana-

lytical solution to equation (30) in the main text, which we repeat here for convenience.

0 = Ẽ
[
H(f̃1st (x, z+1), x, x−1, z+1, z)

]
. (43)

The objective of the alternative formulation is to avoid using a nonlinear equation solver.

Typically, x shows up more than once in H (·) and typically it is possible to find an

analytical expression for x in terms of the other variables and x itself. If that is the case,

then we can rewrite equation (43) as6

x = Ẽ
[
G(f̃1st (x, z+1), x, x−1, z+1, z

]
. (44)

6See section B.2 for an example.

9

Since this is still an equation in x, we have not made any progress. The idea is to use f̃1st (·)

not only for x+1 but also for the value of x inside G (·).7 The one-step ahead modification

is then defined as

x = f̂+1 (x−1, z) = Ẽt
[
G(f̃1st (f̃1st (x−1, z), z+1), f̃1st (x−1, z), x−1, z+1, z

]
. (45)

The two-step ahead modification is defined as

x = f̂+2 (x−1, z) = Ẽt
[
G(f̂+1(f̂+1(x−1, z), z+1), f̂+1(x−1, z), x−1, z+1, z

]
. (46)

Iteration on this scheme leads to the J-step ahead modification of the first-order pertur-

bation solution.

B.2 Perturbation-plus and the neoclassical growth model

The first-order conditions for the neoclassical growth model are given by

ct + kt = eztkαt−1 + (1− δ)kt−1 (47)

and

1 = Et

[(
ct+1

ct

)−γ (
αezt+1kα−1

t + 1− δ
)]
. (48)

The objective is to solve for kt given values of kt−1 and zt. We denote the solution

as kt = f̂+1(kt−1, zt). The solution for kt and ct are obtained using the following two

equations

ct + kt = eztkαt−1 + (1− δ)kt−1 (49a)

1 = Ẽt

ezt+1kαt +

(
1− δ)kt − f̃1st (kt, zt+1)

)
ct

−γ (αezt+1kα−1
t + 1− δ

) . (49b)

where f̃1st (kt, zt+1) is the first-order perturbation solution for kt+1. The conditional expec-

tation Ẽt [·] is the numerical approximation to Et [·] using Gaussian-Hermite quadrature

with five quadrature nodes.
7The difference between the original perturbation-plus procedure and its modification is very similar

to the difference between time iteration and fixed-point iteration. See Chapter 17 in Judd (1998) for a

discussion on these iteration schemes.

10

The procedure described in the last paragraph is the one-step ahead perturbation-plus

procedure, because the behavior of next period’s variables is described using the first-order

perturbation procedure. The two-step ahead perturbation-plus approximation, f̂+2(·), is

the solution to equation (49) with f̃1st (·) replaced by f̂+1(·).

B.3 Perturbation-plus and the matching model

The objective is to solve for λt given the values of the state variables, nt−1 and zt. We

denote this solution by

λt = f̂+1(nt−1, zt). (50)

We solve for λt from a system of five equations in five unknowns. The endogenous variables

are λt, pf,t, vt, ct, and nt. The five equations are

λt = βE

[(
c̃t+1(nt, zt+1)

ct

)−γ (
αezt+1nα−1

t − w + (1− ρn)f̃1st (nt, zt+1)
)]

, (51)

and equations (7), (10), (12), and (14) from the main text, which we repeat here for

convenience.

nt = (1− ρn)nt−1 + pf,tvt, (52)

ψ = pf,t λt, (53)

ct = wnt−1 + (eztnt−1 − wnt−1 − ψvt) = eztnt−1 − ψvt, (54)

pf,t = φ0

(
1− nt−1

vt

)φ
. (55)

For this to be a system in five unknowns, we have to take a stand on how to deter-

mine c̃t+1(nt, zt+1). Since this is next period’s consumption, we could use the first-order

perturbation approximation. Instead we use for c̃t+1(nt, zt+1) the value that is implicitly

defined by equations (52), (53), (54), and (55) from the main text for t+ 1 and

λt+1 = f̃1st (nt, zt+1) . (56)

Thus, we only use the first-order perturbation solution for λt+1 and all the other variables

are obtained using the true model equations.

The two-step ahead perturbation-plus approximation is defined analogously with f̃1st (·)

replaced by f̂+1(·).

11

Simplification. The functions f̂+J(·) are only implicitly defined and its values are calcu-

lated using a nonlinear equation solver. Consequently, the cost of the algorithm increases

sharply with J . In appendix B.1, we discussed a simplification that reduces the costs

substantially. Here we discuss how this is implemented.

Instead of solving for λt, nt and ct simultaneously, we use the following procedure.

First, calculate "temporary" values nt and ct using equations (52), (53), (54), and (55),

and

λt = f̃1st (nt−1, zt) . (57)

Denote the solutions for nt and ct as n
temp
t and ctempt . As above, the value for λt is

calculated from

λt = βE

(c̃t+1(ntempt , zt+1)

ctempt

)−γ αezt+1
(
ntempt

)α−1
− w

+(1− ρn)f̃1st

(
ntempt , zt+1

)
 . (58)

With c̃t+1(ntempt , zt+1) defined as above, we have an analytical expression for λt. The

ntempt variable is only used to calculate λt. Given the solution for λt, the actual value

for nt is then obtained from equations (52), (53), (54), and (55), without making any

further approximation. To calculate f̂+J(·) one would use f̂+J−1(·) instead of f̃1st (·) both

to calculate ntempt , ctempt , and to calculate λt+1 in the Euler equation.

B.4 Perturbation-plus and the modified Deaton model

In each period of the simulation, i.e., given the value for cash on hand, xt, we use an equa-

tion solver to calculate at from the Euler equation. We use Gaussian-Hermite quadrature

to calculate the conditional expectation on the right-hand side of the Euler equation.8

For the one-step ahead modification, we use

ct+1 = at + ezt+1 − at+1

1 + r
(59)

≈ at + ezt+1 − f̃1st (at + ezt+1)

1 + r
(60)

8For the number of quadrature nodes we considered values between five and thirty and found that the

results were robust to changing this number.

12

to calculate the realizations for consumption. This procedure defines the function at =

f̂+1 (xt).

For the two-step ahead modification, we use at+1 = f̂+1 (xt+1) in the expression for

consumption above. For each Gaussian-Hermite node, i.e., for each potential value of

at+ezt+1 , we use an equation solver to calculate at+1 from tomorrow’s Euler equation and

on the right-hand side we use at+2 = f̃1st (xt+2). Since f̃1st (·) is only implicitly defined,

we have to use an equation solver to solve for at+1 for each quadrature node for zt+1.

Although computational expensive, it is easy to iterate on this procedure to calculate

the J-step ahead modification.

C Accuracy of our projection solutions

In this appendix, we document that the projection solutions that serve as a stand-in for

the truth are very accurate.

C.1 Projection solution for matching model

We obtained a very accurate solution for the matching model using the following algorithm

based on projection methods. We parameterized the policy function for the Lagrange

multiplier λ by a linear spline that satisfies the Euler equation on each grid point. We

have used 10, 000 equidistant grid points for n−1 ranging from 0.6 to 0.99. The other state

variable, z, can take on two values, namely −ζ and +ζ.

We used fixed-point iteration and the algorithm does the following at the ith iteration.

Starting point of the ith iteration is the policy function from the last iteration, namely

λ = f (i−1) (n−1, z). Given this policy function it is straightforward to solve for the other

variables. At grid point j, i.e., for given values of n−1,(j) and z(j), the value for λ is given

by

λ(j) = βE

[(
c
(
n(j), z+1

)
c(j)

)−γ (
αez+1nα−1

(j) − w + (1− ρn)λ
(
n(j), z+1

))]
. (61)

Integrating over the possible realizations for z+1 is trivial given that z has discrete sup-

port. If λ
(
n(j), z+1

)
and c

(
n(j), z+1

)
are determined using f (i−1)

(
n(j), z+1

)
, then one

13

can solve for λ(j), n(j), v(j), pf,(j), and c(j) by combining equation (61) with equations

(52), (53), (54), and (55). This would be time iteration. To simplify the algorithm we

use fixed-point iteration. The benefit of time iteration is that it has better convergence

properties, but with the appropriate choice of the dampening parameter, the algorithm

also converged with fixed-point iteration. We implemented fixed-point iteration as follows.

First, calculate λtemp(j) = f (i−1)
(
n−1,(j), z(j)

)
. Use this value to calculate ntemp(j) . Next, solve

for λ using

λ(j) = βE

c

(
ntemp(j) , z+1

)
c(j)

−γ αez+1
(
ntemp(j)

)α−1
− w

+(1− ρn)λ
(
ntemp(j) , z+1

)

 , (62)

where the values for c+1 and λ+1 are based on f (i−1) (·). In principle one could set

f (i)(n−1,(j), z(j)) equal to λ(j). But convergence may require a dampening factor, that is,

to take a weighted average between λ(j) and f (i−1)(n−1,(j), z(j)). We iterate on this scheme

until the maximum absolute difference is less than 1E−12.

As documented in table 1 in the main text, the errors made in the dynamic Euler

equation accuracy test are minuscule.

C.2 Projection solution for modified Deaton model

We obtained an accurate solution for the modified Deaton model using projection tech-

niques. The details are as follows. We parameterized the asset policy function by a linear

spline that satisfies the Euler equation on each grid point. We use time iteration and we

use the endogenous grid points algorithm of Carroll (2006). The advantage of time itera-

tion (compared to fixed-point iteration) is that it has better convergence properties. The

advantage of endogenous grid points is that there is an analytical solution for the variables

when using time iteration. The disadvantage of using time iteration and endogenous grid

points is that we have to specify a grid for both at and zt, while strictly speaking there is

only one state variable, namely cash on hand, at−1 + ezt .

We used 1001 equidistant grid points for at ranging from −0.2 to 2 and we used 1001

equidistant grid points for zt ranging from 0 to 3.

14

The projection algorithm is based on an iterative scheme that does the following at the

ith iteration. Starting point at the ith iteration is the policy function from the last iteration,

namely a = f (i−1) (a−1 + ez). At grid point j, i.e., for given values of a(j) and z(j), the value

for a−1 is solved from the Euler equation. The conditional expectation is approximated

using Gaussian-Hermite quadrature with 30 nodes.9 The possible realizations for c+1 are

given by

c+1 = a(j) + ez+1 −
f (i−1)

(
a(j) + ez+1

)
1 + r

. (63)

This leads to a set of combinations of a−1, a, and z which gives a = f(a−1 + ez). We

iterate on this scheme until the maximum absolute difference between the values of f (i−1)

and f (i) is less than 1E-7.

As documented in table 1 in the main text, the errors made in the dynamic Euler

equation accuracy test are not quite as small as those for the matching model. This model

is more diffi cult to solve, given that the variance is much higher. Nevertheless, the results

are still good. The maximum error is 0.1% and the average error is 0.008%. These errors

are minuscule relative to the errors of the perturbation based methods.

9One does not need that many nodes. But solving the model is not expensive so extra nodes do not

hurt. In contrast, when using multi-step ahead perturbation the cost increases exponentially in the number

of nodes. For that reason we used 5 nodes in the perturbation plus procedure, although we checked for

robustness in some cases.

15

References

Carroll, C. D. (2006): “The Method of Endogenous Gridpoints for Solving Dynamic

Stochastic Optimization Problems,”Economics Letters, 91, 312—320.

Judd, K. L. (1998): Numerical Methods in Economics. The MIT Press, Cambridge,

Massachusetts.

Kim, J., S. Kim, E. Schaumburg, and C. A. Sims (2008): “Calculating and Us-

ing Second-Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models,”

Journal of Economic Dynamics and Control, 32, 3397—3414.

Lombardo, G. (2010): “Approximating DSGE Models by Series Expansions,”Unpub-

lished manuscript, European Central Bank.

16

Table 1: Dynamics for true and incorrect 3rd-order pruned perturbation approximation

t xt x̃
(3)
t

1 σ σ

2 ρ1σ + ρ2σ
2 + ρ3σ

3 ρ1σ + ρ2σ
2 + ρ3σ

3

3

ρ2
1σ + ρ1ρ2σ

2 + ρ1ρ3σ
3

+ρ2

(
(ρ1σ)2 + 2ρ1ρ2σ

3
)

+ρ3 (ρ1σ)3

+O(σ4)

ρ2
1σ + ρ1ρ2σ

2 + ρ1ρ3σ
3

+ρ2 (ρ1σ)2

+ρ3 (ρ1σ)3

Notes: The values for xt correspond to the values according to the true law of motion,
which is given in equation (33a). The values for x̃t correspond to the values according to
the incorrect formulation of the pruning procedure given in equation (38).

