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Overview

• Impulse Response Functions
• Reduced form & Structural VARs

• Short-term restrictions
• Long-term restrictions
• Sign restrictions

• Estimation
• Problems/topics
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How to estimate/evaluate models?

• Full information methods like ML and its Bayesian version take
every aspect of the model as truth

• A less ambitious approach is to focus on just some "key
properties"

• both in the model and in the data

• What properties?
• means, standard deviations, cross-correlations
• but propagation of shocks is key aspect of economic models
=⇒ autocovariance say something about this but not in the
most intuitive way

• IRFs are better for this
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General definition IRFs

• Suppose

yt = f (yt−1, yt−2, · · · , yt−p, εt) and εt has a variance equal to σ2

• The IRF gives the jth-period response when the system is
shocked by a one-standard-deviation shock.
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General definition IRFs

• Consider a sequence of shocks {ε̄t}∞
t=1.

{ȳt}∞
t=1 are the generated series

• Consider an alternative series of shocks such that

ε̃t =

{
ε̄t + σ if t = τ
ε̄t o.w.

• The IRF is then defined as

IRF(j) = ỹτ−1+j − ȳτ−1+j
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IRFs for linear processes

• Linear processes: The IRF is independent of the particular
draws for ε̄t

• Thus we can simply start at the steady state (that is when ε̄t
has been zero for a very long time)

• The effect of a shock of size Λσ is Λ times the effect of a
shock of size σ
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IRFs for linear processes

• For example, if
yt = ρyt−1 + εt

then
IRF(j) = σρj−1

• Often you can not get an analytical formula for the impulse
response function, but simple iteration on the law of motion
(driving process) gives you the exact same answer

• Note that this IRF is not stochastic
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IRFs for nonlinear processes

• IRF depends on
1 state in the period when shock occur (yt−1, yt−2, · · · yt−p)
2 subsequent shocks

• Moreover, the effect of a shock of size Λσ is not Λ times the
effect of a shock of size σ
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IRFs in theoretical models

• When you have solved for the policy functions, then it is trivial
to get the IRFs by simply giving the system a one standard
deviation shock and iterating on the policy functions.

• Shocks in the model are structural shocks, such as
• productivity shock
• preference shock
• monetary policy shock
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IRFs in the data

The big question

• Can we estimate IRFs from the data without specifying an
explicit theoretical model

• That is what structural VARs attempt to do
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VARs & IRFs

What we are going to do?

• Describe an empirical model that has turned out to be very
useful (for example for forecasting)

• Reduced-form VAR

• Describe a way to back out structural shocks (this is the hard
part)

• Structural-VAR
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Reduced Form VARs

• Let yt be an n× 1 vector of n variables (typically in logs)

yt =
J

∑
j=1

Ajyt−j + ut

where Aj is an n× n matrix.

• Wold representation is a justification for the linearity.



Intro & IRFs Reduced-form VARs Estimation Structural VARs Critiques

Reduced Form Vector AutoRegressive
models (VARs)

• constants and trend terms are left out to simplify the notation

• This system can be estimated by OLS (equation by equation)
even if yt contains I(1) variables
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Estimation of VARs

yt =
J

∑
j=1

Ajyt−j + ut

Claim:

• You can simply estimate a VAR in (log) levels even if variables
are I(1) (and even when you have higher-order integration as
long as you have enough lags)

• Why?
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Spurious regression

• Let zt and xt be I(1) variables that have nothing to do with
each other

• Consider the regression equation

zt = axt + ut

• The least-squares estimator is given by

âT =
∑T

t=1 xtzt

∑T
t=1 x2

t

• Problem:
lim

T−→∞
âT 6= 0
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Source of spurious regressions

• The problem is not that zt and xt are I(1)
• The problem is that there is not a single value for a such that

ut is stationary
• If zt and xt are cointegrated then there is a value of a such that

zt − axt is stationary

• Then least-squares estimates of a are consistent
• but you have to change formula for standard errors
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How to avoid spurious regressions?

Answer: Add enough lags.

• Consider the following regression equation

zt = axt + bzt−1 + ut

• Now there are values of the regression coeffi cients so that ut is
stationary, namely

a = 0 and b = 1

• So as long as you have enough lags in the VAR you are fine
(but be careful with inferences)
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How to get standard errors?

• If all data series are stationary you can get standard errors using
the usual formulas (see Hamilton 1994).

• If they are not you can use bootstrapping
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Bootstrapping

• Suppose
yt = ayt−1 + εt

âT =
∑ ytyt−1

∑ yt−1yt−1

• How to get standard errors for IRF?
technique easily generates for more complex VAR and other
statistics
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Bootstrapping

1. Estimate model and IRF

2. Calculate residuals, {ε̂t}T
t=2 = Θ

3. Generate J new sample of length T from

zt = âTzt−1 + et

z1 = y1

et is drawn from Θ
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Bootstrapping

4. In each sample j calculate statistics of interest,
e.g., 4th and 6th-period IRF, IRF(4, j) and IRF(6, j)

5. Order statistics across all J samples from small to large

6. Use this distribution to calculate confidence intervals
e.g., 90% confidence goes from 5th to 95th percentile
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Structural VARs
Consider the reduced-form VAR

yt =
J

∑
j=1

Ajyt−j + ut

• For example suppose that yt contains

• the interest rate set by the central bank
• real GDP
• residential investment

• What affects
• the error term in the interest rate equation?
• the error term in the output equation?
• the error term in the housing equation?



Intro & IRFs Reduced-form VARs Estimation Structural VARs Critiques

Structural shocks

• Suppose that the economy is being hit by "structural shocks",
that is shocks that are not responses to economic events

• Suppose that there are 10 structural shocks. Thus

ut = Bet

where B is a 3× 10 matrix.
• Without loss of generality we can assume that

E[ete′t] = I
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Structural shocks

• Can we identify B from the data?

E[utu′t] = BE[ete′t]B
′ = BB′

• We can get an estimate for E[utu′t] using

Σ̂ =
T

∑
t=J+1

ûtû′t/(T− J)

• But B contains 30 unknowns and

E
[
utu′t

]
= BB′

has only 9 equations
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Identification of B

• Can we identify B if there are only three structural shocks?
• B has 9 distinct elements
• But Σ̂ is symmetric, so we only have 6 (not 9) equations

• Answer is still NO
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Identification of B

• Reason for lack of identification:
Not all equations are independent. Σ1,2 = Σ2,1. For example

Σ1,2 = b11b21 + b12b22 + b13b23

but also
Σ2,1 = b21b11 + b22b12 + b23b13

• In other words, different B matrices lead to the same Σ matrix
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Identification of B

• To identify B we need additional restrictions

• short-term restrictions: direct restrictions on B
• long-term restrictions: restrictions on B such that long-term
responses have a certain value (typically zero)

• sign restrictions: restrictions on B such that IRFs have certain
signs at certain horizons
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Identification of B

 ui
t

uy
t

ur
t

 = B

 e1
t

e2
t

empt


• Suppose we impose

B =

 0 0
0


• Then I can solve for the remaining elements of B from

B̂B̂′ = Σ̂
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Matlab commands

• If

B =

 0 0
0


use B =chol(Σ)′

• If

B =

 0
0 0


use B =

[
chol(Σ−1)

]−1
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Identification of B
• Suppose instead we use uy

t
ui

t
ur

t

 = D

 e1
t

e2
t

empt


• And that we impose

D =

 0 0
0


• This corresponds with imposing

B =

 0
0 0


• This does not affect the IRF of empt . All that matters for the
IRF is whether a variable is ordered before or after rt
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Calculating IRFs from (structural) VAR

1 Calculation IRFs from first-order VAR is trivial

2 Calculation IRFs from higher-order VAR is also trivial,
since higher-order VARs can be written as first-order system
(or you simply iterate on the system)
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First-order VAR

yt = A1yt−1 + Bet

• IRFs, variances, etc. can be calculated analytically,
because you can easily calculate the MA representation:

yt = Bet +A1Bet−1 +A2
1Bet−2 + · · ·
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State-space notation

Every VAR can be presented as a first-order VAR. For example let

[
y1,t
y2,t

]
= A1

[
y1,t−1
y2,t−1

]
+A2

[
y1,t−2
y2,t−2

]
+ B

[
e1,t
e2,t

]


y1,t
y2,t

y1,t−1
y2,t−1

 = [ A1 A2
I2×2 02×2

] 
y1,t−1
y2,t−1
y1,t−2
y2,t−2

+ [ B 02×2
02×2 02×2

] 
e1,t
e2,t
0
0
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State-space notation
•

Yt = AYt−1 + Et,

where Yt is an n× 1 vector and Et is serially uncorrelated. This
AR(1) structure allows for analytical results. For example, let

E
[
YtY′t

]
= ΣY and E

[
EtE′t

]
= ΣY.

• Then
vec (ΣY) = (I−A⊗A)−1 vec (ΣE) ,

which uses that

vec (TVR) = R′ ⊗ Tvec (V)

for conformable matrices T, V, R
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Alternative identification assumptions

• restrictions do not have to be zero restrictions

• you can impose restrictions on B such that IRFs have certain
properties
then restrictions imposed depend on rest of the VAR
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Identifying assumption (Blanchard-Quah)

VAR used by Gali (1999)

zt =
J

∑
j=1

Ajzt−j + Bεt

with

zt =

[
∆ ln(yt/ht)

∆ ln(ht)

]
εt =

[
εt,technology

εt,non-technology

]
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Identifying assumption (Blanchard-Quah)

• Non-technology shock does not have a long-run impact on
productivity

• Long-run impact is zero if
• Response of the level goes to zero
• Responses of the differences sum to zero
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Get MA representation

zt = A(L)zt + Bεt

= (I−A(L))−1Bεt

= D(L)εt

= D0εt +D1εt−1 + · · ·

Note that D0 = B
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Sum of responses

∞

∑
j=0

Dj = D(1) = (I−A(1))−1B

Blanchard-Quah assumption:

∞

∑
j=0

Dj =

[
0
]
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Sign restrictions

BB′ = Σ

General idea of sign restrictions:

• Try "all" matrices B such that the IRFs satisfy certain
properties
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Sign restrictions - example
• Try "all" matrices B such that the IRFs satisfy certain
properties such as
• In response to an expansionary monetary policy shock, the
interest rate falls while money and prices rise.

• In response to a positive shock to money demand, both the
interest rate and money increase.

• In response to a positive demand shock, both output and
prices rise.

• In response to a positive supply shock, output rises but prices
fall.

• In response to a positive external shock, the exchange rate
devaluates and output increases.

• You would have to specify the horizon for which this should hold

These examples are from Rubio-Ramirez, Waggoner, Zha (2005).
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Sign restrictions - General Idea

How to search for "all" B that satisfy BB′ = Σ and the sign
restrictions?

• Let B be the Cholesky decomposition of Σ

• Bs satisfying BB′ = Σ can be expressed as

B = BQ

with Q being an orthogonal matrix, that is

QQ′ = I.
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Sign restrictions - In practice

"Systematically" look for Q such that

1

QQ′ = I.

2

B = QB satisfies the sign restricions
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Givens matrices - Example

Q =

[
Q11 Q12
Q21 Q22

]

• Note that
n

∑
j=1

Q2
ij = 1 ∀i

=⇒∣∣Qij
∣∣ ≤ 1
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Sign restrictions - Givens matrices

• Suppose that B is a 2× 2 Matrix

• Then all Qs satisfying QQ′ = I can be represented with the
following Givens matrices

rotation : Qrot =

[
cos θ − sin θ
sin θ cos θ

]
,−π ≤ θ ≤ π

reflection : Qref =

[
− cos θ sin θ

sin θ cos θ

]
,−π ≤ θ ≤ π

• In practice you can use a grid for θ or draw θ from a uniform
distribution
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Number of Givens matrices
• Let’s index Q by the Q21 element, that is,

Q21 = ω with − 1 ≤ ω ≤ 1

• For each ω there are (at most) four different solutions for
Q11, Q12, and Q22

Q2
11 +Q2

12 = 1
Q11ω+Q12Q22 = 0

ω+Q2
22 = 1

• Thus, focusing on QQ′ = I equation indicates there are 4 Qs
for every ω.

• ω = sin θ has two solutions for θ =⇒ again 4 Qs (two Qrots
and two Qrefs).
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Givens matrices - Third Order

Qrot
1 = cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1


Qrot

2 = cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2


Qrot

3 1 0 0
0 cos θ3 − sin θ3
0 sin θ3 cos θ3
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Givens matrices - Third Order

Qref
1 = − cos θ1 sin θ1 0

sin θ1 cos θ1 0
0 0 1


Qref

2 = − cos θ2 0 sin θ2
0 1 0

sin θ2 0 cos θ2


Qref

3 = 1 0 0
0 − cos θ3 sin θ3
0 sin θ3 cos θ3
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Givens matrices - Third Order

For each combination of θ1, θ2, and θ3 consider

Q =
3

∏
i=1

Qr
i (θi) for r ∈ {rot,ref}
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QR Decomposition

Rubio-Ramirez, Waggoner, and Zha (2005) propose the following
alternative to find orthogonal n× n matrices, which is
computationally more effi cient for large VARs:

1 Let W be an n× n matrix, each element is an i.i.d. draw from
a N (0, 1)

2 Decompose W using the QR decomposition (Householder
transformation)

W = QR,

where Q is the orthogonal matrix we are looking for
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QR Decomposition - Matlab

1 W = randn(3,3);

2 [Q,R]=qr(W);
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QR Decomposition - example

1

W =

 −0.0551 0.1992 0.8829
−1.0717 −0.4964 0.7643
−0.3729 −1.6501 0.2373


2

Q =

 −0.0485 0.174 0.174
−0.9433 0.3156 −0.1027
−0.3283 −0.9327 0.1496
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Sign restrictions - comments

• Sign restrictions give you a set of IRFs.
If you would plot the median at each horizon then this typically
would be a combination of different IRFs, that is, there may
not be one IRF that is close to what you are plotting

• When using sign restrictions in a Bayesian framework, then you
should be careful that drawing from the posterior does not
impose additional restrictions (See Arias, Rubio-Ramirez and
Waggoner 2014 discuss this and provide a mechanism to do
this right)
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If you ever feel bad about getting too much
criticism ....

•

• be glad you are not a structural VAR
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If you ever feel bad about getting too much
criticism ....

•
• be glad you are not a structural VAR
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Structural VARs & critiques

• From MA to AR
• Lippi & Reichlin (1994)

• From prediction errors to structural shocks
• Fernández-Villaverde, Rubio-Ramirez, Sargent, Watson (2007)

• Problems in finite samples
• Chari, Kehoe, McGratten (2008)
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From MA to AR

Consider the two following different MA(1) processes

yt = εt +
1
2

εt−1, Et [εt] = 0, Et

[
ε2

t

]
= σ2

xt = et + 2et−1, Et [et] = 0, Et

[
e2

t

]
= σ2/4

• Different IRFs
• Same variance and covariance

E
[
ytyt−j

]
= E

[
xtxt−j

]
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From MA to AR

• AR representation:

yt = (1+ θL) εt
1

(1+ θL)
yt = εt

1
(1+ θL)

=
∞

∑
j=0

ajLj

• Solve for ajs from

1 = a0 + (a1 + a0θ) L+ (a2 + a1θ) L2 + · · ·
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From MA to AR

Solution:

a0 = 1
a1 = −a0θ

a2 = −a1θ = a0θ2

· · ·

You need
|θ| < 1
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Prediction errors and structural shocks

Solution to economic model

xt+1 = Axt + Bεt+1

yt+1 = Cxt +Dεt+1

• xt: state variables
• yt: observables (used in VAR)
• εt: structural shocks
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Prediction errors and structural shocks

• From the VAR you get prediction error et+1

et+1 = yt+1 − Et [yt+1]

= Cxt +Dεt+1 − Et [Cxt]

= C (xt − Et [xt]) +Dεt+1

• Problem: Not guaranteed that

xt = Et [xt]
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Prediction errors and structural shocks

• Suppose: yt = xt

• that is, all state variables are observed

• Then
xt = Et [xt]
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Prediction errors and structural shocks

• Suppose: yt 6= xt

• Has yt has enough info to uncover xt and, thus, εt?



Intro & IRFs Reduced-form VARs Estimation Structural VARs Critiques

Prediction errors and structural shocks
• Suppose D is invertible

εt = D−1 (yt+1 − Cxt)

=⇒
xt+1 = Axt + BD−1 (yt+1 − Cxt)

=⇒

xt+1

(
I−

(
A+ BD−1C

)
L
)
= yt+1

• =⇒

xt = Et [xt] if

the eigenvalues of A− BD−1C
must be strictly less than 1 in modulus

• See F-V,R-R,S, W (2007)
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Finite sample problems

• Summary of discussion above
• Life is excellent if you observe all state variables
• But,

• we don’t observe capital (well)
• even harder to observe news about future changes

• If ABCD condition is satisfied, you are still ok in theory

• Problem: you may need ∞-order VAR for observables
• recall that kt has complex dynamics
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Finite sample problems

1 Bias of estimated VAR

• apparently bigger for VAR estimated in first differences

2 Good VAR may need many lags
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Alleviating finite sample problems

Do with model exactly what you do with data:

• NOT: compare data results with model IRF
• YES:

• generate N samples of length T
• calculate IRFs as in data
• compare average across N samples with data analogue

This is how Kydland & Prescott calculated business cycle stats
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