Vector Autoregressions (VARs)

Wouter J. Den Haan
London School of Economics

Wouter J. Den Haan

March 23, 2018

Overview

- Impulse Response Functions
- Reduced form \& Structural VARs
- Short-term restrictions
- Long-term restrictions
- Sign restrictions
- Estimation
- Problems/topics

How to estimate/evaluate models?

- Full information methods like ML and its Bayesian version take every aspect of the model as truth
- A less ambitious approach is to focus on just some "key properties"
- both in the model and in the data
- What properties?
- means, standard deviations, cross-correlations
- but propagation of shocks is key aspect of economic models \Longrightarrow autocovariance say something about this but not in the most intuitive way
- IRFs are better for this

General definition IRFs

- Suppose
$y_{t}=f\left(y_{t-1}, y_{t-2}, \cdots, y_{t-p}, \varepsilon_{t}\right)$ and ε_{t} has a variance equal to σ^{2}
- The IRF gives the $j^{\text {th }}$-period response when the system is shocked by a one-standard-deviation shock.

General definition IRFs

- Consider a sequence of shocks $\left\{\bar{\varepsilon}_{t}\right\}_{t=1}^{\infty}$. $\left\{\bar{y}_{t}\right\}_{t=1}^{\infty}$ are the generated series
- Consider an alternative series of shocks such that

$$
\tilde{\varepsilon}_{t}=\left\{\begin{array}{cl}
\bar{\varepsilon}_{t}+\sigma & \text { if } t=\tau \\
\bar{\varepsilon}_{t} & \text { o.w. }
\end{array}\right.
$$

- The IRF is then defined as

$$
\operatorname{IRF}(j)=\tilde{y}_{\tau-1+j}-\bar{y}_{\tau-1+j}
$$

IRFs for linear processes

- Linear processes: The IRF is independent of the particular draws for $\bar{\varepsilon}_{t}$
- Thus we can simply start at the steady state (that is when $\bar{\varepsilon}_{t}$ has been zero for a very long time)
- The effect of a shock of size $\Lambda \sigma$ is Λ times the effect of a shock of size σ

IRFs for linear processes

- For example, if

$$
y_{t}=\rho y_{t-1}+\varepsilon_{t}
$$

then

$$
\operatorname{IRF}(j)=\sigma \rho^{j-1}
$$

- Often you can not get an analytical formula for the impulse response function, but simple iteration on the law of motion (driving process) gives you the exact same answer
- Note that this IRF is not stochastic

IRFs for nonlinear processes

- IRF depends on
(1) state in the period when shock occur $\left(y_{t-1}, y_{t-2}, \cdots y_{t-p}\right)$
(2) subsequent shocks
- Moreover, the effect of a shock of size $\Lambda \sigma$ is not Λ times the effect of a shock of size σ

IRFs in theoretical models

- When you have solved for the policy functions, then it is trivial to get the IRFs by simply giving the system a one standard deviation shock and iterating on the policy functions.
- Shocks in the model are structural shocks, such as
- productivity shock
- preference shock
- monetary policy shock

IRFs in the data

The big question

- Can we estimate IRFs from the data without specifying an explicit theoretical model
- That is what structural VARs attempt to do

VARs \& IRFs

What we are going to do?

- Describe an empirical model that has turned out to be very useful (for example for forecasting)
- Reduced-form VAR
- Describe a way to back out structural shocks (this is the hard part)
- Structural-VAR

Reduced Form VARs

- Let y_{t} be an $n \times 1$ vector of n variables (typically in logs)

$$
y_{t}=\sum_{j=1}^{J} A_{j} y_{t-j}+u_{t}
$$

where A_{j} is an $n \times n$ matrix.

- Wold representation is a justification for the linearity.

Reduced Form Vector AutoRegressive models (VARs)

- constants and trend terms are left out to simplify the notation
- This system can be estimated by OLS (equation by equation) even if y_{t} contains $I(1)$ variables

Estimation of VARs

$$
y_{t}=\sum_{j=1}^{J} A_{j} y_{t-j}+u_{t}
$$

Claim:

- You can simply estimate a VAR in (log) levels even if variables are I(1) (and even when you have higher-order integration as long as you have enough lags)
- Why?

Spurious regression

- Let z_{t} and x_{t} be $I(1)$ variables that have nothing to do with each other
- Consider the regression equation

$$
z_{t}=a x_{t}+u_{t}
$$

- The least-squares estimator is given by

$$
\hat{a}_{T}=\frac{\sum_{t=1}^{T} x_{t} z_{t}}{\sum_{t=1}^{T} x_{t}^{2}}
$$

- Problem:

$$
\lim _{T \longrightarrow \infty} \hat{a}_{T} \neq 0
$$

Source of spurious regressions

- The problem is not that z_{t} and x_{t} are $\mathrm{I}(1)$
- The problem is that there is not a single value for a such that u_{t} is stationary
- If z_{t} and x_{t} are cointegrated then there is a value of a such that

$$
z_{t}-a x_{t} \text { is stationary }
$$

- Then least-squares estimates of a are consistent
- but you have to change formula for standard errors

How to avoid spurious regressions?

Answer: Add enough lags.

- Consider the following regression equation

$$
z_{t}=a x_{t}+b z_{t-1}+u_{t}
$$

- Now there are values of the regression coefficients so that u_{t} is stationary, namely

$$
a=0 \text { and } b=1
$$

- So as long as you have enough lags in the VAR you are fine (but be careful with inferences)

How to get standard errors?

- If all data series are stationary you can get standard errors using the usual formulas (see Hamilton 1994).
- If they are not you can use bootstrapping

Bootstrapping

- Suppose

$$
\begin{aligned}
y_{t} & =a y_{t-1}+\varepsilon_{t} \\
\widehat{a}_{T} & =\frac{\sum y_{t} y_{t-1}}{\sum y_{t-1} y_{t-1}}
\end{aligned}
$$

- How to get standard errors for IRF?
technique easily generates for more complex VAR and other statistics

Bootstrapping

1. Estimate model and IRF
2. Calculate residuals, $\left\{\widehat{\varepsilon}_{t}\right\}_{t=2}^{T}=\Theta$
3. Generate J new sample of length T from

$$
\begin{aligned}
z_{t} & =\widehat{a}_{T} z_{t-1}+e_{t} \\
z_{1} & =y_{1}
\end{aligned}
$$

e_{t} is drawn from Θ

Bootstrapping

4. In each sample j calculate statistics of interest, e.g., $4^{\text {th }}$ and $6^{\text {th }}$-period $\operatorname{IRF}, \operatorname{IRF}(4, j)$ and $\operatorname{IRF}(6, j)$
5. Order statistics across all J samples from small to large
6. Use this distribution to calculate confidence intervals e.g., 90% confidence goes from $5^{\text {th }}$ to $95^{\text {th }}$ percentile

Structural VARs

Consider the reduced-form VAR

$$
y_{t}=\sum_{j=1}^{J} A_{j} y_{t-j}+u_{t}
$$

- For example suppose that y_{t} contains
- the interest rate set by the central bank
- real GDP
- residential investment
- What affects
- the error term in the interest rate equation?
- the error term in the output equation?
- the error term in the housing equation?

Structural shocks

- Suppose that the economy is being hit by "structural shocks", that is shocks that are not responses to economic events
- Suppose that there are 10 structural shocks. Thus

$$
u_{t}=B e_{t}
$$

where B is a 3×10 matrix.

- Without loss of generality we can assume that

$$
\mathrm{E}\left[e_{t} e_{t}^{\prime}\right]=I
$$

Structural shocks

- Can we identify B from the data?

$$
\mathrm{E}\left[u_{t} u_{t}^{\prime}\right]=B \mathrm{E}\left[e_{t} e_{t}^{\prime}\right] B^{\prime}=B B^{\prime}
$$

- We can get an estimate for $\mathrm{E}\left[u_{t} u_{t}^{\prime}\right]$ using

$$
\hat{\Sigma}=\sum_{t=J+1}^{T} \hat{u}_{t} \hat{u}_{t}^{\prime} /(T-J)
$$

- But B contains 30 unknowns and

$$
\mathrm{E}\left[u_{t} u_{t}^{\prime}\right]=B B^{\prime}
$$

has only 9 equations

Identification of B

- Can we identify B if there are only three structural shocks?
- B has 9 distinct elements
- But $\hat{\Sigma}$ is symmetric, so we only have 6 (not 9) equations
- Answer is still NO

Identification of B

- Reason for lack of identification:

Not all equations are independent. $\Sigma_{1,2}=\Sigma_{2,1}$. For example

$$
\Sigma_{1,2}=b_{11} b_{21}+b_{12} b_{22}+b_{13} b_{23}
$$

but also

$$
\Sigma_{2,1}=b_{21} b_{11}+b_{22} b_{12}+b_{23} b_{13}
$$

- In other words, different B matrices lead to the same Σ matrix

Identification of B

- To identify B we need additional restrictions
- short-term restrictions: direct restrictions on B
- long-term restrictions: restrictions on B such that long-term responses have a certain value (typically zero)
- sign restrictions: restrictions on B such that IRFs have certain signs at certain horizons

Identification of B

$$
\left[\begin{array}{c}
u_{t}^{i} \\
u_{t}^{y} \\
u_{t}^{r}
\end{array}\right]=B\left[\begin{array}{c}
e_{t}^{1} \\
e_{t}^{2} \\
e_{t}^{\mathrm{mp}}
\end{array}\right]
$$

- Suppose we impose

$$
B=\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right]
$$

- Then I can solve for the remaining elements of B from

$$
\hat{B} \hat{B}^{\prime}=\hat{\Sigma}
$$

Matlab commands

- If

$$
B=\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right]
$$

use $B=\operatorname{chol}(\Sigma)$)

- If

$$
B=\left[\begin{array}{ll}
& \\
0 & \\
0 & 0
\end{array}\right]
$$

use $B=\left[\operatorname{chol}\left(\Sigma^{-1}\right)\right]^{-1}$

Identification of B

- Suppose instead we use

$$
\left[\begin{array}{l}
u_{t}^{y} \\
u_{t}^{i} \\
u_{t}^{r}
\end{array}\right]=D\left[\begin{array}{c}
e_{t}^{1} \\
e_{t}^{2} \\
e_{t}^{m p}
\end{array}\right]
$$

- And that we impose

$$
D=\left[\begin{array}{ll}
0 & 0 \\
& 0
\end{array}\right]
$$

- This corresponds with imposing

$$
B=\left[\begin{array}{ll}
& 0 \\
0 & 0
\end{array}\right]
$$

- This does not affect the IRF of e_{t}^{mp}. All that matters for the IRF is whether a variable is ordered before or after r_{t}

Calculating IRFs from (structural) VAR

(1) Calculation IRFs from first-order VAR is trivial
(2) Calculation IRFs from higher-order VAR is also trivial, since higher-order VARs can be written as first-order system (or you simply iterate on the system)

First-order VAR

$$
y_{t}=A_{1} y_{t-1}+B e_{t}
$$

- IRFs, variances, etc. can be calculated analytically, because you can easily calculate the MA representation:

$$
y_{t}=B e_{t}+A_{1} B e_{t-1}+A_{1}^{2} B e_{t-2}+\cdots
$$

State-space notation

Every VAR can be presented as a first-order VAR. For example let

$$
\begin{gathered}
{\left[\begin{array}{l}
y_{1, t} \\
y_{2, t}
\end{array}\right]=A_{1}\left[\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1}
\end{array}\right]+A_{2}\left[\begin{array}{l}
y_{1, t-2} \\
y_{2, t-2}
\end{array}\right]+B\left[\begin{array}{l}
e_{1, t} \\
e_{2, t}
\end{array}\right]} \\
{\left[\begin{array}{c}
y_{1, t} \\
y_{2, t} \\
y_{1, t-1} \\
y_{2, t-1}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
I_{2 \times 2} & 0_{2 \times 2}
\end{array}\right]\left[\begin{array}{l}
y_{1, t-1} \\
y_{2, t-1} \\
y_{1, t-2} \\
y_{2, t-2}
\end{array}\right]+\left[\begin{array}{cc}
B & 0_{2 \times 2} \\
0_{2 \times 2} & 0_{2 \times 2}
\end{array}\right]\left[\begin{array}{c}
e_{1, t} \\
e_{2, t} \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

State-space notation

$$
Y_{t}=A Y_{t-1}+E_{t}
$$

where Y_{t} is an $n \times 1$ vector and E_{t} is serially uncorrelated. This $\operatorname{AR}(1)$ structure allows for analytical results. For example, let

$$
\mathrm{E}\left[Y_{t} Y_{t}^{\prime}\right]=\Sigma_{Y} \text { and } \mathrm{E}\left[E_{t} E_{t}^{\prime}\right]=\Sigma_{Y} .
$$

- Then

$$
\operatorname{vec}\left(\Sigma_{Y}\right)=(I-A \otimes A)^{-1} \operatorname{vec}\left(\Sigma_{E}\right),
$$

which uses that

$$
\operatorname{vec}(T V R)=R^{\prime} \otimes \operatorname{Tvec}(V)
$$

for conformable matrices T, V, R

Alternative identification assumptions

- restrictions do not have to be zero restrictions
- you can impose restrictions on B such that IRFs have certain properties
then restrictions imposed depend on rest of the VAR

Identifying assumption (Blanchard-Quah)

VAR used by Gali (1999)

$$
\begin{aligned}
z_{t}= & \sum_{j=1}^{J} A_{j} z_{t-j}+B \varepsilon_{t} \\
& \text { with } \\
z_{t}= & {\left[\begin{array}{c}
\Delta \ln \left(y_{t} / h_{t}\right) \\
\Delta \ln \left(h_{t}\right)
\end{array}\right] } \\
\varepsilon_{t}= & {\left[\begin{array}{c}
\varepsilon_{t, \text { technology }} \\
\varepsilon_{t, \text { non-technology }}
\end{array}\right] }
\end{aligned}
$$

Identifying assumption (Blanchard-Quah)

- Non-technology shock does not have a long-run impact on productivity
- Long-run impact is zero if
- Response of the level goes to zero
- Responses of the differences sum to zero

Get MA representation

$$
\begin{aligned}
z_{t} & =A(L) z_{t}+B \varepsilon_{t} \\
& =(I-A(L))^{-1} B \varepsilon_{t} \\
& =D(L) \varepsilon_{t} \\
& =D_{0} \varepsilon_{t}+D_{1} \varepsilon_{t-1}+\cdots
\end{aligned}
$$

Note that $D_{0}=B$

Sum of responses

$$
\sum_{j=0}^{\infty} D_{j}=D(1)=(I-A(1))^{-1} B
$$

Blanchard-Quah assumption:

$$
\sum_{j=0}^{\infty} D_{j}=\left[\begin{array}{l}
0 \\
\end{array}\right.
$$

Sign restrictions

$$
B B^{\prime}=\Sigma
$$

General idea of sign restrictions:

- Try "all" matrices B such that the IRFs satisfy certain properties

Sign restrictions - example

- Try "all" matrices B such that the IRFs satisfy certain properties such as
- In response to an expansionary monetary policy shock, the interest rate falls while money and prices rise.
- In response to a positive shock to money demand, both the interest rate and money increase.
- In response to a positive demand shock, both output and prices rise.
- In response to a positive supply shock, output rises but prices fall.
- In response to a positive external shock, the exchange rate devaluates and output increases.
- You would have to specify the horizon for which this should hold

Sign restrictions - General Idea

How to search for "all" B that satisfy $B B^{\prime}=\Sigma$ and the sign restrictions?

- Let \bar{B} be the Cholesky decomposition of Σ
- Bs satisfying $B B^{\prime}=\Sigma$ can be expressed as

$$
B=\bar{B} Q
$$

with Q being an orthogonal matrix, that is

$$
Q Q^{\prime}=I
$$

Sign restrictions - In practice

"Systematically" look for Q such that
(1)

$$
Q Q^{\prime}=I .
$$

(2)

$$
B=Q \bar{B} \text { satisfies the sign restricions }
$$

Givens matrices - Example

$$
Q=\left[\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right]
$$

- Note that

$$
\begin{aligned}
\sum_{j=1}^{n} Q_{i j}^{2} & =1 \forall i \\
& \Longrightarrow \\
\left|Q_{i j}\right| & \leq 1
\end{aligned}
$$

Sign restrictions - Givens matrices

- Suppose that B is a 2×2 Matrix
- Then all Q s satisfying $Q Q^{\prime}=I$ can be represented with the following Givens matrices

$$
\begin{array}{r}
\text { rotation }: \quad Q^{\text {rot }}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right],-\pi \leq \theta \leq \pi \\
\text { reflection }
\end{array}: \quad Q^{\text {ref }}=\left[\begin{array}{cc}
-\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right],-\pi \leq \theta \leq \pi,
$$

- In practice you can use a grid for θ or draw θ from a uniform distribution

Number of Givens matrices

- Let's index Q by the Q_{21} element, that is,

$$
Q_{21}=\omega \text { with }-1 \leq \omega \leq 1
$$

- For each ω there are (at most) four different solutions for Q_{11}, Q_{12}, and Q_{22}

$$
\begin{aligned}
Q_{11}^{2}+Q_{12}^{2} & =1 \\
Q_{11} \omega+Q_{12} Q_{22} & =0 \\
\omega+Q_{22}^{2} & =1
\end{aligned}
$$

- Thus, focusing on $Q Q^{\prime}=I$ equation indicates there are $4 Q s$ for every ω.
- $\omega=\sin \theta$ has two solutions for $\theta \Longrightarrow$ again $4 Q s$ (two $Q^{\text {rot } s}$ and two $Q^{\text {ref }}$ s).

Givens matrices - Third Order

Givens matrices - Third Order

$$
\begin{aligned}
& Q_{1}^{\text {ref }}= \\
& {\left[\begin{array}{ccc}
-\cos \theta_{1} & \sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& Q_{2}^{\text {ref }}=\quad Q_{3}^{\text {ref }}= \\
& {\left[\begin{array}{ccc}
-\cos \theta_{2} & 0 & \sin \theta_{2} \\
0 & 1 & 0 \\
\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\cos \theta_{3} & \sin \theta_{3} \\
0 & \sin \theta_{3} & \cos \theta_{3}
\end{array}\right]}
\end{aligned}
$$

Givens matrices - Third Order

For each combination of θ_{1}, θ_{2}, and θ_{3} consider

$$
Q=\prod_{i=1}^{3} Q_{i}^{r}\left(\theta_{i}\right) \text { for } r \in\{\text { rot }, \mathrm{ref}\}
$$

QR Decomposition

Rubio-Ramirez, Waggoner, and Zha (2005) propose the following alternative to find orthogonal $n \times n$ matrices, which is computationally more efficient for large VARs:
(1) Let W be an $n \times n$ matrix, each element is an i.i.d. draw from a $N(0,1)$
(2) Decompose W using the $Q R$ decomposition (Householder transformation)

$$
W=Q R
$$

where Q is the orthogonal matrix we are looking for

QR Decomposition - Matlab

(1) $\mathrm{W}=\operatorname{randn}(3,3)$;
(2 $[Q, R]=\operatorname{qr}(W)$;

QR Decomposition - example

1

$$
\mathrm{W}=\left[\begin{array}{ccc}
-0.0551 & 0.1992 & 0.8829 \\
-1.0717 & -0.4964 & 0.7643 \\
-0.3729 & -1.6501 & 0.2373
\end{array}\right]
$$

(2)

$$
\mathrm{Q}=\left[\begin{array}{ccc}
-0.0485 & 0.174 & 0.174 \\
-0.9433 & 0.3156 & -0.1027 \\
-0.3283 & -0.9327 & 0.1496
\end{array}\right]
$$

Sign restrictions - comments

- Sign restrictions give you a set of IRFs. If you would plot the median at each horizon then this typically would be a combination of different IRFs, that is, there may not be one IRF that is close to what you are plotting
- When using sign restrictions in a Bayesian framework, then you should be careful that drawing from the posterior does not impose additional restrictions (See Arias, Rubio-Ramirez and Waggoner 2014 discuss this and provide a mechanism to do this right)

If you ever feel bad about getting too much criticism

If you ever feel bad about getting too much criticism

- be glad you are not a structural VAR

Structural VARs \& critiques

- From MA to AR
- Lippi \& Reichlin (1994)
- From prediction errors to structural shocks
- Fernández-Villaverde, Rubio-Ramirez, Sargent, Watson (2007)
- Problems in finite samples
- Chari, Kehoe, McGratten (2008)

From MA to AR

Consider the two following different $\mathrm{MA}(1)$ processes

$$
\begin{aligned}
& y_{t}=\varepsilon_{t}+\frac{1}{2} \varepsilon_{t-1}, \quad \mathrm{E}_{t}\left[\varepsilon_{t}\right]=0, \mathrm{E}_{t}\left[\varepsilon_{t}^{2}\right]=\sigma^{2} \\
& x_{t}=e_{t}+2 e_{t-1}, \quad \mathrm{E}_{t}\left[e_{t}\right]=0, \mathrm{E}_{t}\left[e_{t}^{2}\right]=\sigma^{2} / 4
\end{aligned}
$$

- Different IRFs
- Same variance and covariance

$$
\mathrm{E}\left[y_{t} y_{t-j}\right]=\mathrm{E}\left[x_{t} x_{t-j}\right]
$$

From MA to AR

- AR representation:

$$
\begin{aligned}
y_{t} & =(1+\theta L) \varepsilon_{t} \\
\frac{1}{(1+\theta L)} y_{t} & =\varepsilon_{t} \\
\frac{1}{(1+\theta L)} & =\sum_{j=0}^{\infty} a_{j} j^{j}
\end{aligned}
$$

- Solve for $a_{j} \mathrm{~s}$ from

$$
1=a_{0}+\left(a_{1}+a_{0} \theta\right) L+\left(a_{2}+a_{1} \theta\right) L^{2}+\cdots
$$

From MA to AR

Solution:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=-a_{0} \theta \\
& a_{2}=-a_{1} \theta=a_{0} \theta^{2}
\end{aligned}
$$

You need

$$
|\theta|<1
$$

Prediction errors and structural shocks

Solution to economic model

$$
\begin{aligned}
x_{t+1} & =A x_{t}+B \varepsilon_{t+1} \\
y_{t+1} & =C x_{t}+D \varepsilon_{t+1}
\end{aligned}
$$

- x_{t} : state variables
- y_{t} : observables (used in VAR)
- ε_{t} : structural shocks

Prediction errors and structural shocks

- From the VAR you get prediction error e_{t+1}

$$
\begin{aligned}
e_{t+1} & =y_{t+1}-\mathrm{E}_{t}\left[y_{t+1}\right] \\
& =C x_{t}+D \varepsilon_{t+1}-\mathrm{E}_{t}\left[C x_{t}\right] \\
& =C\left(x_{t}-\mathrm{E}_{t}\left[x_{t}\right]\right)+D \varepsilon_{t+1}
\end{aligned}
$$

- Problem: Not guaranteed that

$$
x_{t}=\mathrm{E}_{t}\left[x_{t}\right]
$$

Prediction errors and structural shocks

- Suppose: $y_{t}=x_{t}$
- that is, all state variables are observed
- Then

$$
x_{t}=\mathrm{E}_{t}\left[x_{t}\right]
$$

Prediction errors and structural shocks

- Suppose: $y_{t} \neq x_{t}$
- Has y_{t} has enough info to uncover x_{t} and, thus, ε_{t} ?

Prediction errors and structural shocks

- Suppose D is invertible

$$
\begin{gathered}
\varepsilon_{t}=D^{-1}\left(y_{t+1}-C x_{t}\right) \\
\Longrightarrow \\
x_{t+1}=A x_{t}+B D^{-1}\left(y_{t+1}-C x_{t}\right) \\
\Longrightarrow \\
x_{t+1}\left(I-\left(A+B D^{-1} C\right) L\right)=y_{t+1}
\end{gathered}
$$

$$
x_{t}=E_{t}\left[x_{t}\right] \text { if }
$$

the eigenvalues of $A-B D^{-1} C$ must be strictly less than 1 in modulus

- See F-V,R-R,S, W (2007)

Finite sample problems

- Summary of discussion above
- Life is excellent if you observe all state variables
- But,
- we don't observe capital (well)
- even harder to observe news about future changes
- If $A B C D$ condition is satisfied, you are still ok in theory
- Problem: you may need ∞-order VAR for observables
- recall that k_{t} has complex dynamics

Finite sample problems

(1) Bias of estimated VAR

- apparently bigger for VAR estimated in first differences
(2) Good VAR may need many lags

Alleviating finite sample problems

Do with model exactly what you do with data:

- NOT: compare data results with model IRF
- YES:
- generate N samples of length T
- calculate IRFs as in data
- compare average across N samples with data analogue

This is how Kydland \& Prescott calculated business cycle stats

References

- Arias, J.E., J.F. Rubio-Ramirez, D.F. Waggoner, Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications, Federal Reserve Board International Finance Discussion Paper 2014-1100. Available at
- http://www.federalreserve.gov/pubs/ifdp/2014/1100/default.htm.
- Chari, V.V., P.J. Kehoe, E.R. McGrattan, 2008, Are structural VARs with long-run restrictions useful in developing business cycle theory?, Journal of Monetary Economics, 55, 1337-52.
- Fernandez-Villaverde, J., J.F. Rubio-Ramirez, T.J. Sargent, and M.Watson, 2007, ABCs (and Ds) of Understanding VARs, Econometrica, 97, 1021-26.

Gives conditions whether a particular VAR can infer structural shocks.

- Fry, R. and A. Pagan, 2011, Sign Restrictions in Structual Vector Autoregressions: A Critical Review, Journal of Economic Literature, 49, 938-960.
- overview of sign restrictions in VARs and detailed discussion of its weaknesses
- Kilian, Lutz, 2011, Structural Vector Autogressions.
- Overview paper that gives several examples of identification choices for different theoretical models. Available at
- http://www-personal.umich.edu/~Ikilian/elgarhdbk_kilian.pdf.
- Lippi, M., and L. Reichlin, 1994, VAR analysis, nonfundamental representations, Blaschke matrices, Journal of Econometrics, 63, 307-325.
- Luetkepohl, H., 2011, Vector Autoregressive Models, EUI Working Papers ECO2011/30.
- detailed paper on estimating and working with VARs. Available at
- cadmus.eui.eu/bitstream/handle/1814/19354/ECO_2011_30.pdf
- Rubio-Ramirez, Juan F., D.F. Waggoner, and T. Zha, 2005, Markov-Switching Structural Vector Autogressions: Theory and Applications, Federal Reserve Bank of Atlanta Working Paper 2005-27.
- contains a detailed discussion of different identification schemes and sign restrictions in particular. Available at
- http://www.frbatlanta.org/filelegacydocs/wp0527.pdf.
- Whelan, K.,2014 MA Advanced Macroeconomics.
- Set of slides with more detailed info and a discussion of several empirical examples. Available at
- http://www.karlwhelan.com/MAMacro/part2.pdf
- http://www.karlwhelan.com/MAMacro/part3.pdf
- http://www.karlwhelan.com/MAMacro/part4.pdf

