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Intro Fourier transform Spectrum Filters and I(1) processes Band pass filters

Overview

• Intro
• lag operator
• Why frequency domain?

• Fourier transform
• Data as cosine waves
• Spectrum
• Filters & I(1) processes
• Band-pass filters
• HP filter
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The big picture

In these slides we do three things

1 Make clear that stochastic time series can be represented as a
sum of deterministic cosine waves

2 Learn some tools from frequency domain analysis

3 These tools will make it possible to extract from any time series
that part associated with the frequencies we are interested (for
example business cycle analysis)
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Lag operator

xt−1 = Lxt

xt−2 = Lxt−1 = LLxt = L2xt

xt+1 = L−1xt

∆xt = (1− L) xt
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Lag operator

xt = ρxt−1 + εt with |ρ| < 1
xt = ρLxt + εt

(1− ρL) xt = εt

xt =
εt

1− ρL
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Lag operator

1
1− ρ

= 1+ ρ+ ρ2 + ρ3 + · · · if |ρ| < 1

1
1− ρL

= 1+ ρL+ ρ2L2 + ρ3L3 + · · · if |ρL| < 1
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Why go to frequency domain

1 Extract that part from the data that your model tries to explain

• e.g., business cycle frequencies

2 Some calculations are easier in frequency domain

• e.g., auto-covariances of ARMA processes
• not the focus on this lecture
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Fourier Transform

Given a sequence {xj}∞
−∞ the Fourier transform is defined as

F(ω) =
∞

∑
j=−∞

xje−iωj

If xj = x−j then

F(ω) = x0 +
∞

∑
j=1

xj

(
e−iωj + eiωj

)
= x0 +

∞

∑
j=1

2xj cos(ωj)

and the Fourier transform is a real-valued symmetric function.
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Fourier Transform

Given a continuous sequence x (j) , the Fourier transform is defined
as

F(ω) =
∫ ∞

j=−∞
x (j) e−iωjdj
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Fourier Transform

• It is just a definition!
• which turns out to be useful

• see links to youtube videos at the end of the slides
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Why useful?

The Fourier transform can detect frequency of data. Suppose, the
sequences considered are time series. Specifically, consider

xA,t = cos(ωAt)
xB,t = cos(ωBt)

xt = xA,t + xB,t
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Why useful?

FA (ω)

=
∫ ∞

−∞
cos (ωAt) e−iωtdt

=
∫ ∞

−∞
cos (ωAt) (cos (−ωt) + i sin (−ωt)) dt

=
∫ ∞

−∞
cos (ωAt) cos (−ωt) dt+ i

∫ ∞

−∞
cos (ωAt) sin (−ωt) dt

=
∫ ∞

−∞
cos (ωAt) cos (ωt) dt− i

∫ ∞

−∞
cos (ωAt) sin (−ωt) dt

=

{
> 0 if ω = ±ωA
= 0 if ω 6= ωA
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Why useful?

Because things are additive, we get

F (ω) = FA (ω) + FB (ω)

=


> 0 if ω = ±ωA
> 0 if ω = ±ωB
= 0 otherwise

• =⇒ Fourier transform of a time series selects the frequencies.
• If there is a phase shift in any of these series, then the series
are no longer symmetric around t = 0 and the Fourier
transform would also have an imaginary part.
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Inverse Fourier Transform

• Given a Fourier Transform F(ω), one can back out the original
sequence using

xj =
1

2π

∫ π

−π
F(ω)eiωjdω =

1
2π

∫ π

−π
F(ω) (cos ωj+ i sin ωj) dω

and if F(ω) is symmetric then

xj =
1

2π

∫ π

−π
F(ω) cos ωj dω =

1
π

∫ π

0
F(ω) cos ωj dω

• derivation is in the notes
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Thinking differently about a time series

• You can take the Fourier transform of any sequence

• So you can also take it of a time series
• take finite analogue if time series is finite
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Thinking differently about a time series

• Finite Fourier transform of {xt}T
t=1, scaled by

√
T

x̃(ω) =
1√
T

T

∑
t=1

e−iωtxt.

• Let
ωj = (j− 1)2π/T for j = 1, · · · , T
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Formulas

x̃(ω) can be expressed as

x̃(ω) = |x̃(ω)| eiφ(ω)

with

x̃(−ω) = |x̃(ω)| e−iφ(ω)
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Thinking differently about a time series

• The finite inverse Fourier transform is given by

xt =
1√
T

∑
|ωj|≤π

eiωjtx̃(ωj)

=
1√
T

∑
|ωj|≤π

|x̃(ω)| eiωjteiφ(ω)

=
x̃(0) +∑0<ωj≤π |x̃(ω)|

(
ei(ωjt+φ(ω)) + e−i(ωjt+φ(ω))

)
√

T
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Thinking differently about a time series
Using

eiδ(ω) = cos δ (ω) + i sin δ (ω)

or
eiδ(ω) + eiδ(ω) = 2 cos δ (ω)

gives

xt =
1√
T

x̃(0) + 2 ∑
0<ωj≤π

∣∣x̃(ωj)
∣∣ cos(ωjt+ φ(ωj))


This makes clear we can think of a time series as a sum of
deterministic cosine waves

•
∣∣x̃(ωj)

∣∣ captures the quantiative importance of a particular
frequency
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Two realizations of the same time series
process

• Suppose xt and yt are two realizations of the same time series
process, say an AR(1).

• Then the
∣∣x̃(ωj)

∣∣ would be similar (or same if there is no
sampling uncertainty)

• The random differences due to different realizations of the
shocks are captured by having different phase shifts, φ(ω)

20 / 60



Intro Fourier transform Spectrum Filters and I(1) processes Band pass filters

Thinking differently about a time series

xt =
1√
T

x̃(0) + 2 ∑
ωj≤π

∣∣x̃(ωj)
∣∣ cos(ωjt+ φ(ωj))


Simple interpretation:

• xt : dependent variable (T observations)

• ωjt : T independent variables

• get perfect fit by choosing
∣∣x̃(ωj)

∣∣ and φ(ωj)

• if
∣∣x̃(ωj)

∣∣ is high than that frequency is important for time
variation xt
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(Informally) thinking about the variance

• What is the variance of xt?

• Focus on the case with E[xt] = 0

• E
[
x2

t
]
depends on E

[(
∑ωj<π x̃(ωj)

)2
]

• Fortunately, limT−→∞E
[
x̃(ωj)x̃(ωi)

]
= 0

• variance of xt depends just on sum of the squared
∣∣x̃(ωj)

∣∣
terms (or on the integral in the limit)
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Spectrum

• Given a sequence {γj}∞
−∞ of autocovariances of a scalar

process then the spectrum is defined as

S(ω) =
1

2π

∞

∑
j=−∞

γje
−iωj =

1
2π

(
γ0 +

∞

∑
j=1

2γj cos(ωj)

)

• And according to the inverse

γ0 =
∫ π

−π
S(ω) dω

• That is, if you integrate over all frequencies you get the
variance. This is also consistent with the view that the data can
be thought of as a sum of cosine waves
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Spectrum

So spectrum is just the Fourier transform of the covariances
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Spectrum of transformed series

If

yt =
∞

∑
j=−∞

bjxt−j = b(L)xt

Then

Sy(ω) = b(e−iω)b(eiω)Sx(ω) =
∣∣∣b(e−iω)

∣∣∣2 Sx(ω)

• |·| is the modulus of the complex number
• Note that b(e−iω) is the Fourier transform of the bj sequence

• For symmetric filters we have b(e−iω) = b(eiω)

25 / 60



Intro Fourier transform Spectrum Filters and I(1) processes Band pass filters

Examples - white noise

xt = εt and E
[
εtεt−j

]
= 0 for j 6= 0

S(ω) =
1

2π

∞

∑
j=−∞

γje
−iωj

=
1

2π

(
γ0 +

∞

∑
j=1

2γj cos(ωj)

)
=

γ0
2π
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Examples - AR(1)

yt = ρyt−1 + xt

yt =
xt

1− ρL

Sy(ω) =

∣∣∣∣ 1
1− ρe−iω

∣∣∣∣2 Sx(ω)

=
1

1− ρe−iω
1

1− ρe+iω Sx(ω)

=
1

1− ρ
(
e−iω + e+iω

)
+ ρ2 Sx(ω)

=
1

1− 2ρ cos ω+ ρ2 Sx(ω)
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Examples - VAR(P)

yt =
J

∑
j=1

Ajyt−j + xt

yt =

(
I−

J

∑
j=1

AjLj

)−1

xt

Sy(ω) =

(
I−

J

∑
j=1

Aje−ijω

)−1

Sx(ω)

(
I−

J

∑
j=1

A′je
ijω

)−1
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Examples - VAR(P)

yt =
J

∑
j=1

Ajyt−j + xt

Sy(0) =

(
I−

J

∑
j=1

Aje−ij×0

)−1

Sx(ω)

(
I−

J

∑
j=1

A′je
ij×0

)−1

=

(
I−

J

∑
j=1

Aj

)−1

Sx(ω)

(
I−

J

∑
j=1

A′j

)−1

This last formula is useful in calculating Heteroskedastic and

Autocorrelation Consistent (HAC) variance-covariance estimators
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What is a filter?

• A filter is just a tranformation of the data
• Typically with a particular purpose

• e.g. remove seasonality or "noise"

• Filters can be expressed as

xf
t = b(L)xt

b(L) =
∞

∑
j=−∞

bjLj
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Examples of filters

b(L) = 1− L =⇒ xf
t = xt − xt−1

b(L) = −1
2

L−1 + 1− 1
2

L
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I(0) and I(1) processes

• I(0) processes do not have trends1

• xt is I(1) if ∆xt is I(0)

1I(0) processes are often referred to as stationary stationary processes.
Strictly speaking that is not correct. Stationary processes also don’t have trends
but also don’t allow for changes in the distribution. Defining I(0) is a bit tricky
and there are different definitions. A relatively easy description of an I(0)
process is a stochastic process for which past errors do not accumulate.
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I(0) and I(1) processes

xt = B (L) εt,

where εt is white noise.

• If xt is I(1), then B (1) = ∞

• If B (1) < ∞, then xt is I(0)

(same holds is εt is I(0))
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Filters that induce stationarity, meaning
I(0)

• Suppose that xt is I(1). Thus

(1− L)xt = zt

with zt an I(0) process.
• Filtering gives

xf
t = b(L)xt

• Question: When is xf
t I(0)?
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Filters that induce stationarity
Define b̄(L) such that

b(L) = (1− L)b̄(L).

If
b̄(1) < ∞,

then xf
t = b(L)xt is I(0) even if xt is I(1).

xf
t = b(L)xt

= (1− L)b̄(L)xt

= (1− L)b̄(L)
zt

(1− L)
= b̄(L)zt
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Filters that induce stationarity

Suppose

b(L) =
J

∑
j=−J

bjLj and b (1) = 0

That is, L = 1 is a root of the problem b (L) = 0, which means we
have

b(L) = (1− L)b̄(L).

Since b̄(L) is of finite-order, we know that

b̄(1) < ∞.

Consequently, xf
t = b(L)xt is I(0) if xt is I(1).
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Spectrum of filtered series

yt =
∞

∑
j=−∞

bjxt−j = b(L)xt

Then

Sy(ω) = b(e−iω)b(eiω)Sx(ω) =
∣∣∣b(e−iω)

∣∣∣2 Sx(ω)

• |·| is the modulus of the complex number
• Note that b(e−iω) is the Fourier transform of the bj sequence

• For symmetric filters we have b(e−iω) = b(eiω)
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Band-pass filters

yt = b(L)xt

Goal:

Sy(ω) =

{
Sx(ω) if ωL ≤ |ω| ≤ ωH

0 o.w.

Thus we need

b(e−iω) =

{
1 if ωL ≤ |ω| ≤ ωH

0 o.w.

• How to find the coeffi cients bj that correspond with this?

• Since b(e−iω) is a Fourier transform we can use the inverse of
the Fourier transform
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Coeffi cients of band-pass filters

Inverse of the Fourier transform for b0:

bj =
1

2π

∫ π

−π
b(e−iω)eiωjdω

=
1

2π

(∫ −ωL

−ωH

1× eiωjdω+
∫ ωH

ωL

1× eiωjdω

)
=

ωH −ωL

π
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Coeffi cients of band-pass filters
Inverse of the Fourier transform for bj:

bj =
1

2π

∫ π

−π
b(e−iω)eiωjdω

=
1

2π

(∫ −ωL

−ωH

1× eiωjdω+
∫ ωH

ωL

1× eiωjdω

)
=

1
2π

(∫ ωH

ωL

(
eiωj + e−iωj

)
dω

)
=

1
2π

∫ ωH

ωL

2 cos(ωj)dω

=
1
π

1
j

sin ωj]ωH
ωL
=

sin(ωHj)− sin(ωLj)
πj

Note that you can also get b0 from the last line by using l’Hopital’s
rule
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Properties of the band-pass filter

b(L) =
∞

∑
j=−∞

bjLj

• Consider the roots to the problem:

b(L) = 0

If L = 1 is a root of the problem, then we have

b(L) = (1− L)b̄(L) with b̄(1) < ∞
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Properties of the band-pass filter

• But L = 1 is a root of our filter as long as ωL > 0, because
then we have by construction

b(1) = b(e−i0) = 0

Clearly, if you do not filter out the zero frequency then you do
not induce stationarity
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More on I(1) processes

• Discussion above showed

xf
t = b(L)xt is I(0) even if xt is I(1)

• This is not enough to show that the filter does what it is
supposed to do, which is

• ensure the spectrum of the filtered series is zero for the
excluded frequencies

• ensure the spectrum of the filtered series equals the spectrum
of the original series for the included frequencies

• The second condition requires a definition of the spectrum for
I(1) processes
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Spectrum for I(1) processes
Consider an arbitrary I(1) process

xt =
zt

1− L

Let
xρ,t =

zt

1− ρL
For ρ < 1 the spectrum of xρ,t is well defined

Sρ,x(ω) =
1

1− 2ρ cos(ω) + ρ2 Sz(ω)

Define the spectrum of xt as

Sx(ω) = lim
ρ−→1

Sρ,x(ω)

This is well defined for all ω > 0, but not for ω = 0.
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Filtered I(1) process

xf
t = b(L)xt

Let b(L) be a band-pass filter, that is,

b(e−iω) =

{
1 if ωL ≤ ω ≤ ωH
0 o.w.
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Filtered I(1) process

• if ωL > 0, then it can be shown that

• xf
t is I(0) (because as shown above we know that b(1) = 0) and

• Sxf (ω) =

{
Sx(ω) if ωL ≤ ω ≤ ωH
0 o.w.

• That is, using the definition of the Spectrum for I(1) processes
the filter does exactly what it is supposed to do

• Proof is simple; The only tricky thing is to prove is that

b(e−i0)Sx(0) = 0
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Practical Filter
• The filter constructed so far is two-sided and infinite order
• Implementable version would be to use

b̃(L) =
J

∑
j=−J

bjLj

But it is not necessarily the case that

b̃(1) = 0

So instead use

a(L) =
J

∑
j=−J

ajLj

with

aj = bj + µ and µ = −
∑J

j=−J bj

2J+ 1
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Properties practical filter

 14

  FIGURE 3.1: SPECTRA OF FILTERED PROCESSES (ω1 = π/16,ω2 =π) 

A: White Noise (Squared Gain) 
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Note: The variance of the white noise process in Panel A is chosen in such a way that Panel A also 
represents the squared gain of the filter used in these three panels. 
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Properties practical filter

 14

  FIGURE 3.1: SPECTRA OF FILTERED PROCESSES (ω1 = π/16,ω2 =π) 

A: White Noise (Squared Gain) 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

TRUE

K = 40

K = 20

 

frequency (/π) 

B: AR(1) with Coefficient equal to 0.95 

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

TRUE

K = 40

K = 20

 

frequency (/π) 

C: Integrated AR(1) with Coefficient equal to 0.4 

-10

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

TRUE

K = 40

K = 20

 

frequency (/π) 

Note: The variance of the white noise process in Panel A is chosen in such a way that Panel A also 
represents the squared gain of the filter used in these three panels. 

49 / 60



Intro Fourier transform Spectrum Filters and I(1) processes Band pass filters

Properties practical filter
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Hodrick-Prescott Filter

• The HP trend, xτ,t is defined as follows

{xτ,t}T
t=1

=

arg min
{xτ,t}T

t=1

T−1

∑
t=2
(xt − xτ,t)

2 + λ
T−1

∑
t=2

{[
(xτ,t+1 − xτ,t)
− (xτ,t − xτ,t−1)

]2
}
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Hodrick-Prescott Filter

• λ = 1, 600 standard for quarterly data

• the HP filter is then approximately equal to a band-pass filter
with ωL = π/16 and ωH = π.

• That is, it keeps that part of the series associated with cycles
that have a period less than 32 (=2π/(π/16)) periods (i.e.
quarters).
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Understanding filtered data is tricky

• Is filtered white noise serially uncorrelated?

• Are the filtered price level and filtered output positively
correlated in a model with only demand shocks?
(example below is from Den Haan 2000)
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Simple demand shock model

• Output is demand determined

yt = yd
t = Dt − Pt

• Demand is given by

(1− λ1L) (1− λ2L) (1− λ3L)Dt = εt

with − 1 < λ3 < λ2 < λ1 ≤ 1

• Output is given by
ys

t = a+ bt
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Simple demand shock model

• Equilibrium price level P̃t satisfies

P̃t = Dt − ys
t

• Actual prices adjust gradually

Pt = (1− β)Pt−1 + βP̃t
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Simple demand shock model

Solution

• Price level

Pt =
βεt

(1− (1− β) L) (1− λ1L) (1− λ2L) (1− λ3L)

• Output

yt =
(1− β) (1− L) εt

(1− (1− β) L) (1− λ1L) (1− λ2L) (1− λ3L)

56 / 60



Intro Fourier transform Spectrum Filters and I(1) processes Band pass filters

Positive correlation for unfiltered series

Note: These "gures plot the impulse response functions of the indicated variables in response to
a demand shock when the demand shock is an integrated AR(1) with j

2
"0.5, the speed of

adjustment parameter b"0.05.

Fig. 4. The e!ects of a non-stationary demand shock. (A) Impulse response of the price level and its
HP trend. (B) Impulse response of output and the HP trend level. (C) Deviations from the HP trend
for output and prices.

largest root. If
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maxMj
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Then, COR(K)'0 for all K.

18 W.J. den Haan / Journal of Monetary Economics 46 (2000) 3}30
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Negative correlation for filtered series

Note: These "gures plot the impulse response functions of the indicated variables in response to
a demand shock when the demand shock is an integrated AR(1) with j

2
"0.5, the speed of

adjustment parameter b"0.05.

Fig. 4. The e!ects of a non-stationary demand shock. (A) Impulse response of the price level and its
HP trend. (B) Impulse response of output and the HP trend level. (C) Deviations from the HP trend
for output and prices.

largest root. If

j
1
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maxMj
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Then, COR(K)'0 for all K.
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Cool youtube videos

• https://www.youtube.com/watch?v=spUNpyF58BY
• https://www.youtube.com/watch?v=1JnayXHhjlg
• https://www.youtube.com/watch?v=kKu6JDqNma8
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